Ароматические нитросоединения
Ароматические нитросоединения делятся на две группы: соединения, содержащие нитрогруппу, связанную с атомом углерода ароматического ядра, и соединения, содержащие нитрогруппу в боковой цепи:
В зависимости оттого, у какого (первичного, вторичного,третичного) атома углерода находится нитрогруппа, нитросоединения бывают первичные, вторичные или третичные.
Названия нитросоединений образуют путем добавления префикса нитро- к названию соответствующего углеводорода с указанием положения нитрогруппы:
Нитроарены, содержащие нитрогруппу в боковой цепи, рассматривают как производные предельных углеводородов, содержащих в качестве заместителей ароматический радикал и нитрогруппу:
Способы получения
1. Нитрование алканов (реакция Коновалова). На предельный углеводород действуют разбавлен ной азотной кислотой (10–25%) при повышенной температуре и давлении.
2. Нитрование аренов. Нитросоелинения, содержащие нитрогруппу, связанную с ароматическим радикалом, получают нитрованием аренов смесью концентрированных азотной и серной кислот, называемой «нитрующей смесью». Реакция протекает по механизму электрофильного замещения (SE),
Максимально в бензольное ядро можно ввести три нитрогруппы, Нитрогруппа настолько дезактивирует бензольное ядро, что для введения второй нитрогруппы требуются более жесткие условия, а третья вводится с большим трудом,
3. Действие солей азотистой кислоты на галогенопроизводные алканов:
Данную реакцию целесообразно проводить в среде апротонного растворителя для уменьшения образования побочных продуктов – эфиров азотистой кислоты,
3. Окислениетрет-алкиламинов. Данный способ используют только для получения третичных нитросоединений:
По физическим свойствам нитросоединения ряда – это жидкие или кристаллические бесцветные или окрашенные в желтый цвет вещества Причиной окрашивания является наличие хромофора – группы –NO2. Нитросоединения имеют приятный запах, ядовиты. Мало растворимы в воде, растворимы в большинстве органических растворителей.
Химические свойства
Для нитросоединений характерны два ряда реакций: реакции с участием нитрогруппы и реакции с участием подвижных атомов водорода при α-углеродном атоме.
1. Таутомерия и образование солей. Благодаря наличию подвижных атомов водорода при α-углеродном атоме первичные и вторичные нитросоединения являются таутомерными веществами.
В растворе между этими формами устанавливается динамическое равновесие. Такой вид таутомерии получил название – аци-нитро-таутомерии. В нейтральной среде равновесие почти полностью смещено в сторону нитроформы. В щелочной среде равновесие смещается в сторону аци-нитроформы.Так, первичные и вторичные нитроалканы растворяются в водном растворе щелочи, образуя соли нитроновых кислот.
Соли нитроновых кислот легко разрушаются минеральными кислотами с образованием исходных нитроалканов.
Третичные нитросоединения ввиду отсутствия подвижных атомов водорода при α-углеродном атоме не способны к таутомерии, а следовательно не взаимодействуют со щелочами.
2. Реакция с азотистой кислотой. Первичные, вторичные и третичные нитросоединения по разному относятся к действию азотистой кислоты, В реакцию с НNO2 вступают только те нитросоединения, у которых есть подвижные атомы водорода при α-углеродном атоме.
Первичные нитропроизводные образуют алкил нитроловые кислоты:
Нитроловые кислоты растворяются в щелочах, образуя соли, окрашенные в красный цвет.
Вторичные нитросоединения с азотистой кислотой образуют псевдонитролы (нитрозо-нитросоединения):
Псевдонитролы – это бесцветные вещества, которые в кристаллическом состоянии являются ассоциированными соединениями, но в растворе или в расплаве ассоциаты разрушаются и появляется синее окрашивание.
Третичные нитросоединения не реагируют с азотистой кислотой.
Реакцию с азотистой кислотой используют для отличия первичных, вторичных и третичных нитросоединений друг от друга.
3. Реакция конденсации с альдегидами и кетонами. За счет подвижных атомов водорода в α-положении нитросоединения способны в слабощелочной среде вступать в реакции конденсации с альдегидом с образованием нитроспиртов (нитроалканолов):
Нитроспирты легко дегидратируются с образованием непредельных нитросоединений.
4. Реакция восстановления. При восстановлении нитроалканов образуются алкиламины:
При восстановлении ароматических нитросоединений образуются ароматические амины (реакция Зинина). В зависимости от рН реакционной среды процесс восстановления может идти по двум направлениям, отличающимся образованием разных промежуточных продуктов.
В нейтральной и кислой среде (рН < 7) в качестве промежуточных соединений образуются ароматические нитрозосоединения и арилгидроксиламины:
В щелочной среде (рН>7) происходит конденсация образующихся в процессе реакции нитрозососдинений сарилгидроксиламином и образуются азоксисоединения. Последние присоединяют водород и превращаются в гидразосоединения, которые, в свою очередь, легко переходят в ариламины:
Реакцию восстановления нитроаренов в щелочной среле (рН>7) можно остановить на любой из приведенных стадий. Она служит основным способом получения азо- и гидразосоединений. Реакция открыта в 1842 году русским ученым Н.Н. Зининым,
Дата добавления: 2015-09-29; просмотров: 11727;