Момент инерции

 

При вращении твердого тела вокруг неподвижной оси отдельные точки тела описывают окружности, центры которых лежат на оси вращения. Основы кинематики вращательного движения были изложены в разделе 1.5.

Для описания вращательного движения твердого тела вводят понятие момента инерции.

Моментом инерции I материальной точки называется скалярная физическая величина, определяемая произведением ее массы на квадрат радиуса окружности , по которой она может двигаться относительно некоторой произвольно выбранной оси ОО‛ (рис.4.1,а)

.

 

а) б)

Рис.4.1. К определению понятия момента инерции

 

Если твердое тело, вращающееся относительно некоторой произвольно выбранной оси ОО', представить в виде системы материальных точек массой и просуммировать моменты инерции этих так называемых элементарных масс, то получим момент инерции всего тела

где – радиус вращения i–й элементарной массы, а интеграл берется по всему объему тела (рис. 4.1,б). Для однородных тел, для которых плотность (где – масса тела, а – его объем, т.е. плотностьопределяется массой, заключенной в единице объема), момент инерции будет вычисляться по формуле

, т.е. .

Ниже приведены значения моментов инерции для некоторых однородных тел правильной формы с массой относительно оси, проходящей через центр масс тела.

Таблица 2

Моменты инерции тел правильной формы

 

Тело Положение оси вращения Момент инерции
Полый тонкостенный цилиндр радиусом R Ось симметрии
Сплошной цилиндр или диск радиусом R Ось симметрии
Прямой тонкий стержень длиной l Ось перпендикулярна стержню и проходит через его середину
Шар радиусом R Ось проходит через центр шара

 

Для определения момента инерции тела относительно произвольной оси используется теорема Штейнера.

Теорема Штейнера:если известен момент инерции тела относительно оси ОО', проходящей через центр масс тела (обозначим его Io), то момент инерции тела
относительно любой параллельной ей оси ZZ'
(обозначим его ) равен

,

где – масса тела; d – расстояние между осями (рис.4.2).

 









Дата добавления: 2015-09-18; просмотров: 1031;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.