Теорема Стокса. Знание в каждой точке поверхности S позволяет найти циркуляцию по контуру Г, ограничивающему S

Знание в каждой точке поверхности S позволяет найти циркуляцию по контуру Г, ограничивающему S. Для этого разобьем S на малые , каждую из которых можно считать плоской и описывать вектором . Тогда

. (13.38)

В силу аддитивности циркуляции, циркуляция по контуру Г, ограничивающему S

. (13.39)

В пределе, при , учитывая, что , получаем :

. (13.40)

Это соотношение называют теоремой СТОКСА.

 

13.10 Представление градиента, дивергенции и ротора с использованием оператора Ñ

Запись формул векторного анализа существенно упрощается при использовании векторного дифференциального оператора Ñ:

. (13.41)

Если Ñ умножить на скалярную функцию :

, то получаем . Поэтому часто вместо

пишут . Итак:

. (13.42)

Если Ñ скалярно умножить на векторную функцию , то получится скаляр

. (13.43)

Если же Ñ умножить на вектор векторно, то получим

. (13.44)








Дата добавления: 2015-09-14; просмотров: 585;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.