Ротор вектора
Аддитивность циркуляции позволяет ввести понятие об удельной циркуляции, то есть можно рассматривать отношение циркуляции С по контуру ограничивающему S, к величине S: .
Для неаддитивной величины рассматривать ее удельную величину бессмысленно. Например, возьмем удельную температуру площадки S: . Температура величина неаддитивная, и от деления площадки на части не меняется. Если площадку разделить на части , то их «удельная Т» будет возрастать, при уменьшении , до бесконечности, ничего не характеризуя. Если взять аддитивную величину массу, то удельная масса площадки в « » не уходит, а является поверхностной плотностью площадки, характеризует распределение массы по поверхности. Циркуляция величина аддитивная, и об удельной циркуляции имеет смысл говорить.
Однако, удельная циркуляция является макроскопической характеристикой, усреднённо характеризует свойства поля в пределах площадки S. Для описания свойств поля в точке можно использовать удельнную циркуляцию в точке :
. (13.28)
Этот предел зависит не только от способности данного поля «создавать» циркуляцию, но и от ориентации в пространстве площадки S, то есть контура ее ограничивающего. Ориентацию контура принято задавать направлением положительной нормали, направление которой связано с направлением обхода контура при вычислении циркуляции, правилом правого винта.
Предел (13.28),найденныйдля противоположно ориентированных положительных , отличается только знаком. Противоположным направлениям соответствует противоположные при вычислении . Существуют такие направления, , для которых предел (13.28) достигает максимального значения и такие, когда обращается в нуль.
Получается, что предел (13.28)ведет себя как проекция некоторого вектора на ось, направленную в сторону нормали, соответствующей максимальному значению предела .Если этот вектор направлен в сторону , его проекция максимальна, если он ей перпендикулярен, проекция равна нулю, и проекция отрицательна для направления, противоположного .
Этот вектор и называется ротором вектора и обозначается
.
Максимальное значение предела (13.28)определяет модуль , а соответствующее направление нормали – направление .
Таким образом, можно утверждать, что при произвольной ориентации контура предел (13.28) дает проекцию ротора на направление нормали , задающей ориентацию контура в пространстве:
. (13.29)
13.8 Выражение для в декартовой системе координат
Соотношение (13.29) позволяет найти проекцию ротора вектора на заданное направление. Поскольку является вектором, для его определения необходимо задать его проекции на оси координат. Это позволит найти вектор в целом:
(13.30)
Поэтому представим контур в виде прямоугольника со сторонами, параллельными осям координат и (рисунок 13.5). Выберем направление обхода контура так, как указано стрелками, чтобы нормаль к контуру совпадала с направлением оси . Площадь контура равна . Найдем циркуляцию по такому контуру и, разделив ее на площадь контура, получим выражение для проекции ротора на ось .
На участке 1 , поскольку на этом участке элементы контура направлены навстречу оси . На участке 3 . Аналогичные соотношения справедливы и для участков 2 и 4. Будем считать и достаточно малыми, чтобы проекцию вектора на этих участках можно было бы считать постоянной. Тогда для циркуляции по контуру можно записать:
. (13.31)
Приращение составляющей при смещении на представим в виде:
. (13.32)
Соответственно
. (13.33)
Поэтому циркуляция по контуру, ориентированному нормалью вдоль :
. (13.34)
Разделим на , и для проекции ротора на ось получим:
. (13.35)
Рассуждая аналогичным образом для проекций на и можем записать:
, (13.36)
. (13.37)
Осталось подставить найденные проекции ротора в формулу (13.30):
.
Дата добавления: 2015-09-14; просмотров: 825;