Формулировка задачи распознавания образов.

Лекция 10. Задачи распознавания образов.

 

Постановка задачи распознавания образов.

Предмет распознавания образов.

Распознавание образов – это область кибернетики, связанная с искусственным интеллектом (ИИ) по линии выработки принципов и методов классификации и идентификации объектов, которые могут быть описаны конечным набором признаков или свойств, характеризующих данный объект [1]. Данное определение неявно подразумевает случай, когда представляемый образ должен распознаваться по неполной информации, что в практических приложениях чаще всего имеет место.

Среди отечественных исследованиях это направление представлено пионерскими работами М.М. Бонгарда (60-е гг. ХХ в.) в области машинного обучения, который всякий учебный процесс рассматривал как целенаправленное распознавание образов учебной информации. Таким образом, моделируя деятельность мозга в рамках простейших нейросетевых моделей (вроде перцептрона Ф. Розенблатта), были реализованы программы «Арифметика» (распознавание числовых таблиц, построенных по разным арифметическим законам) и «Геометрия» (распознавание геометрических образов в виде биполярных клеток) [2].

 

Формулировка задачи распознавания образов.

Формально задача распознавания образов описывается в рамках следующей модели. Дано некоторое множество М объектов m, на котором существует конечное разбиение M=M1 Mn. Разбиение определено не полностью и известна лишь некоторая частичная информация I0 (M1;…;Mn) о классах Mi, i= . Каждый из объектов m M характеризуется определенным набором признаков xj, j= и каждый из признаков xj может принимать значения из некоторого множества допустимых значений, например, из множества {-1; 0;1}, полагая xj=-1 при невыполнении данного признака для объекта m; xj=1 – при его выполнении; значение xj=0 – говорит об отсутствии информации об этом признаке у объекта m. Таким образом, описание I(m) объекта m представляет собой некоторый вектор (x1(m);…;xs(m))= I(m). Задача распознавания при этом сводится к тому, чтобы для заданного объекта m M по его описанию I(m) в рамках классов разбиения и известной обучающей информации I0(M1;…; Mn) о классах определить значения предикатов Pi(m): m Mj, полагая значение 1 при m Mj, значение -1 при m Mj и значение 0, если не известно принадлежит объект m классу Mi или нет. В результате для объекта m определяется так называемый информационный вектор =(a1(m);…;an(m)), где ai(m) {-1;0;1}, представляющий решение поставленной задачи.

 








Дата добавления: 2015-08-14; просмотров: 552;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.