Элементы комбинаторики

 

Комбинаторика (комбинаторный анализ) - раздел дискретной математики, посвященный решению задач выбора и расположения элементов некоторого, обычно конечного, множества в соответствии с заданными правилами.

Правило произведения. Пусть из некоторого конечного множества

1-й объект можно выбрать к 1 способами,

2-ой объект - к 2 способами,

…..………………………...…, (1.2)

n-ый объект - к n способами.

Тогда произвольный набор, перечисленных n объектов, из данного множества можно выбрать к1·к2·…·кn способами.

Правило суммы. При выполнении условий (1.2), любой из объектов можно выбрать к1 + к2 + к3 + …+ кn способами.

Обычно в комбинаторике рассматривается идеализированный эксперимент по выбору наудачу к элементов из n. При этом элементы: а) не возвращаются обратно (схема выбора без возвращений); б) возвращаются обратно (схема выбора с возвращением).

I. Схема выбора без возвращений. Размещением из n элементов по к называют любой упорядоченный набор из к элементов, принадлежащих n элементному множеству. Различные размещения отличны друг от друга или порядком элементов, или составом.

Число размещений из n элементов по к обозначается и вычисляется по формуле

, (1.3)

где n!= , 1!=1 , 0!=1.

Перестановкой из n элементов называют размещение из n элементов по n. Перестановки отличаются друг от друга порядком своих элементов. Число перестановок из n элементов обозначают Рn и вычисляют по формуле

. (1.4)

Сочетанием из n элементов по к называется любой набор из к элементов, принадлежащих n элементному множеству. Различные сочетания отличаются друг от друга только составом своих элементов.

Число сочетаний из n элементов по к обозначается и вычисляется по формуле

. (1.5)

 

Справедливы тождества:

(1.6)

II.Схема выбора с возвращениями. Если при выборе к элементов из n - элементы возвращаются обратно и упорядочиваются, то говорят, что это размещения с повторениями.

Число размещений с повторениями

. (1.7)

Если при выборе к элементов из n элементы возвращаются обратно без последующего упорядочивания, то говорят, что это сочетания с повторениями. Число сочетаний с повторениями из n элементов по к

. (1.8)

III. Схема упорядоченных разбиений. Пусть к12,…,кr – целые числа, такие, что к1 + к2+…+кr=n, кi³0 (i=1,2,...,r).Число способов, которыми генеральную совокупность из n элементов можно разделить на r упорядоченных частей (r подмножеств или r групп), из которых первая содержит к1 элементов, вторая - к2 элементов и r-тая - кr элементов обозначается Сn1, к2,…, кr) и вычисляется по формуле

. (1.9)

Числа, которые определяются по формуле (1.9), называются полиномиальными коэффициентами.

 








Дата добавления: 2015-08-11; просмотров: 830;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.