Теоремы о предельном переходе в неравенствах.

 

Теорема 1. Теорема о «двух милиционерах».

Пусть заданы 3 функции f(x), j(x), g(x) такие, что f(x)£j(x)£g(x). Тогда если

 

 

Док-во: Вычтем А из всех частей неравенства f(x)£j(x)£g(x):

f(x)-A£j(x)-A£g(x)-A.

По теореме о представлении функции, имеющей предел: f(x)=A+a(x), g(x)=A+b(x), где a(x) и b(x) являются б/м. Между двумя б/м может находиться только б/м Þ по теореме о представлении функции, имеющей предел: .

Ч.т.д.

Теорема 2: Пусть функция f(x)³0 и существует конечный предел . Тогда A³0.

Док-во: Предположим противное: A<0. Тогда окрестность точки A лежит по оси ОY ниже начала координат. Þ В этой окрестности f(x)<0, чего быть не может.

Ч.т.д.

Теорема 3: Если f(x)³g(x) и

 

 

Док-во: Из неравенства f(x)³g(x) Þ f(x)-g(x)³0. По предыдущей теореме и арифметическим операциям Þ A³B.

Ч.т.д.

 








Дата добавления: 2015-08-11; просмотров: 1229;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.