Колебания, возникающие под действием внешней периодически изменяющейся силы, называются вынужденными механическими колебаниями. 5 страница

В связи с обнаружением релятивистского эффекта замедления хода часов в свое время возникла проблема «парадокса часов» (иногда рассматривается как «парадокс близнецов»), вызвавшая многочисленные дискуссии. Представим себе, что осуществляется фантастический космический полет к звезде, находящейся на расстоянии 500 световых лет (расстояние, на которое свет от звезды до Земли доходит за 500 лет), со скоростью, близкой к скорости света ( = 0,001). По земным часам полет до звезды и обратно продлится 1000 лет, в то время как для системы корабля и космонавта в нем такое же путешествие займет всего 1 год. Таким образом, космонавт возвратится на Землю в 1/ раз более молодым, чем его брат-близнец, оставшийся на Земле. Это явление, получившее название парадокса близнецов,в действительности парадокса не содержит. Дело в том, что принцип относительности утверждает равноправность не всяких систем отсчета, а только инерциальных. Неправильность рассуждения состоит в том, что системы отсчета, связанные с близнецами,– не эквивалентны: земная система инерциальна, а корабельная – неинерциальна, поэтому к ним принцип относительности неприменим.

Релятивистский эффект замедления хода часов является совершенно реальным и получил экспериментальное подтверждение при изучении нестабильных, самопроизвольно распадающихся элементарных частиц в опытах с -мезонами. Среднее время жизни покоящихся -мезонов (по часам, движущимся вместе с ними) Следовательно, -мезоны, образующиеся в верхних слоях атмосферы (на высоте «30 км) и движущиеся со скоростью, близкой к скорости света, должны были бы проходить расстояния , т.е. не могли бы достигать земной поверхности, что противоречит действительности. Объясняется это релятивистским эффектом замедления хода времени: для земного наблюдателя срок жизни -мезона , а путь этих частиц в атмосфере . Так как , то .

3. Длина тел в разных системах отсчета.Рассмотрим стержень, расположенный вдоль оси х' и покоящийся относительно системы К'. Длина стержня в системе К' будет , где не изменяющиеся со временем координаты конца и начала стержня, а индекс 0 показывает, что в системе отсчета К' стержень покоится. Определим длину этого стержня в системе К, относительно которой он движется со скоростью v. Для этого необходимо измерить координаты его концов в системе К в один и тот же момент времени t. Их разность и даст длину стержня в системе К. Используя преобразования Лоренца (13.8), получим

,

т.е. (13.12)

Таким образом, длина стержня, измеренная в системе, относительно которой он движется, оказывается меньше длины, измеренной в системе, относительно которой стержень покоится. Если стержень покоится в системе К, то, определяя его длину в системе К', опять-таки придем к выражению (13.12).

Из выражения (13.12) следует, что линейный размер тела, движущегося относительно инерциальной системы отсчета, уменьшается в направлении движения раз, т.е. так называемое лоренцево сокращение длинытем больше, чем больше скорость движения. Из второго и третьего уравнений преобразований Лоренца (13.8) следует, что , , т.е. поперечные размеры тела не зависят от скорости его движения и одинаковы во всех инерциальных системах отсчета. Таким образом, линейные размеры тела наибольшие в той инерциальной системе отсчета, относительно которой тело покоится.

4. Преобразование и сложение скоростей.Рассмотрим движение материальной точки в системе К', в свою очередь движущейся относительно системы К со скоростью v. Определим скорость этой же точки в системе К. Если в системе К движение точки в каждый момент времени t определяется координатами х, у, z, а в системе К' в момент времени – координатами х', у', z', то и представляют собой соответственно проекции на оси х, у, z и х', у', z' вектора скорости рассматриваемой точки относительно систем К и

Согласно преобразованиям Лоренца (13.8),

.

Произведя соответствующие преобразования, получаем релятивистский закон сложения скоростей специальной теории относительности:

 

, , , , (13.13)   .

 

Если материальная точка движется параллельно оси х, то скорость и относительно системы К совпадает с их, а скорость и' относительно К' – с и'х. Тогда закон сложения скоростей примет вид

, (13.14)

Легко убедиться в том, что если скорости v, и' и и малы по сравнению со скоростью света с, то формулы (13.14) и (13.13) переходят в закон сложения скоростей в классической механике. Таким образом, законы релятивистской механики в предельном случае для малых скоростей (по сравнению со скоростью света) переходят в законы классической физики, которая, следовательно, является частным случаем механики Эйнштейна для малых скоростей.

Релятивистский закон сложения скоростей подчиняется второму постулату Эйнштейна. Действительно, если , то формула (13.14)) примет вид (аналогично можно показать, что при скорость и' также равна с). Этот результат свидетельствует о том, что релятивистский закон сложения скоростей находится в согласии спостулатами Эйнштейна.

Докажем также, что если складываемые скорости сколь угодно близки к скорости света с, то их результирующая скорость будет всегда меньше или равна с. Вкачестве примера рассмотрим предельный случай u' = v = c. После подстановки в формулу (13.14) получим и = с. Таким образом, при сложении любых скоростей результат не может превысить скорости света с в вакууме. Скорость света в вакууме есть предельная скорость, которую невозможно превысить.

 

 

5. Интервал между событиями

 

Преобразования Лоренца и следствия из них приводят к выводу об относительности длин и промежутков времени, значение которых в различных системах отсчета разное. В то же время относительный характер длин и промежутков времени в теории Эйнштейна означает относительность отдельных компонентов какой-тореальной физической величины, не зависящей от системы отсчета, т.е. являющейся инвариантной по отношению к преобразованиям координат. В четырехмерном пространстве Эйнштейна, в котором каждое событие характеризуется четырьмя координатами , такой физической величиной является интервал между двумя событиями:

, (13.15)

где – расстояние между точками обычного трехмерного пространства, в которых эти события произошли. Введя обозначение , , покажем, что интервал между двумя событиями одинаков во всех инерциальных системах отсчета. Обозначив , , , , выражение (13.15) можно записать в виде .

Интервал между теми же событиями в системе К' равен

(13.16)

Согласно преобразованиям Лоренца (13.8),

.

Подставив эти значения в (13.16), после элементарных преобразований получим, что , т.е. .

Обобщая полученные результаты, можно сделать вывод, что интервал, определяя пространственно-временные соотношения между событиями, является инвариантом при переходе от одной инерциальной системы отсчета к другой. Инвариантность интервала означает, что, несмотря на относительность длин и промежутков времени, течение событий носит объективный характер и не зависит от системы отсчета.

Теория относительности, таким образом, сформулировала новое представление о пространстве и времени, обобщенное далее в диалектическом материализме. Пространственно-временные отношения являются не абсолютными величинами, как утверждала механика Галилея-Ньютона, а относительными. Следовательно, представления об абсолютном пространстве и времени являются несостоятельными. Кроме того, инвариантность интервала между двумя событиями свидетельствует о том, что пространство и время органически связаны между собой и образуют единую форму существования материи – пространство-время. Пространство и время не существуют вне материи и независимо от нее.

Дальнейшее развитие теории относительности (общая теория относительности,или теория тяготения)показало, что свойства пространства-времени в данной области определяются действующими в ней полями тяготения. При переходе к космическим масштабам геометрия пространства-времени не является евклидовой (т.е. не зависящей от размеров области пространства-времени), а изменяется от одной области к другой в зависимости от концентрации масс в этих областях и их движения.

 

 


6. Основной закон релятивистской динамики материальной точки

 

Согласно представлениям классической механики, масса тела есть величина постоянная. Однако в конце XIX столетия на опытах с быстро движущимися электронами было установлено, что масса тела зависит от скорости его движения, а именно возрастает с увеличением скорости по закону

, (13.17)

где – масса покояматериальной точки, т.е. масса, измеренная в той инерциальной системе отсчета, относительно которой материальная точка находится в покое; с – скорость света в вакууме; т – масса точки в системе отсчета, относительно которой она движется со скоростью и. Из принципа относительности Эйнштейна, утверждающего инвариантность всех законов природы при переходе от одной инерциальной системы отсчета к другой, следует условие инвариантности уравнений физических законов относительно преобразований Лоренца. Основной закон динамики Ньютона оказывается также инвариантным по отношению к преобразованиям Лоренца, если в нем справа стоит производная по времени от релятивистского импульса.

Основной закон релятивистской динамикиматериальной точки имеет вид

(13.18)

или

(13.19)

где ) (13.20)

– релятивистский импульсматериальной точки.

Отметим, что уравнение (13.20) внешне совпадает с основным уравнением ньютоновской механики. Однако физический смысл его другой: справа стоит производная по времени от релятивистского импульса, определяемого формулой (13.20). Таким образом, уравнение (13.20) инвариантно по отношению к преобразованиям Лоренца и, следовательно, удовлетворяет принципу относительности Эйнштейна. Следует учитывать, что ни импульс, ни сила не являются инвариантными величинами. Более того, в общем случае ускорение не совпадает по направлению с силой.

В силу однородности пространства в релятивистской механике выполняется закон сохранения релятивистского импульса:релятивистский импульс замкнутой системы сохраняется, т.е. не изменяется с течением времени. Часто вообще не оговаривают, что рассматривают релятивистский импульс, так как если тела движутся со скоростями, близкими к с, то можно использовать только релятивистское выражение для импульса.

Анализ формул (13.17) – (13.19) показывает, что при скоростях, значительно меньших скорости света, уравнение (13.20) переходит в основной закон классической механики. Следовательно, условием применимости законов классической (ньютоновской) механики является условие v<<c. Законы классической механики получаются как следствие теории относительности для предельного случая v<<c (формально переход осуществляется при ). Таким образом, классическая механика это механика макротел, движущихся с малыми скоростями (по сравнению со скоростью света в вакууме).

Экспериментальное доказательство зависимости массы от скорости (13.20) является подтверждением справедливости специальной теории относительности.

 

 

7. Взаимосвязь массы и энергии

 

Найдем кинетическую энергию релятивистской частицы (материальной точки). Раньше было показано, что приращение кинетической энергии материальной точки на элементарном перемещении равно работе силы на этом перемещении:

или dT=Fdr(13.21)

Учитывая, что dr = v dt, и подставив в (13.21) выражение (13.20), получим .

Преобразовав данное выражение с учетом того, что vdv =vdv, а также учитывая формулу (13.20), придем к выражению

(13.22)

т.е. приращение кинетической энергии частицы пропорционально приращению ее массы.

Так как кинетическая энергия покоящейся частицы равна нулю, а ее масса равна массе покоя т0, то, проинтегрировав (13.22), получим

Т = (т – т0(13.23)

или кинетическая энергия релятивистской частицы имеет вид

(13.24)

Разлагая в ряд , пренебрегая членами второго порядка малости при v<<c, выражение (13.24) переходит в классическое: .

А.Эйнштейн обобщил положение (13.22), предположив, что оно справедливо не только для кинетической энергии материальной точки, но и для полной энергии, а именно: любое изменение массы сопровождается изменением полной энергии материальной точки

(13.25)

Отсюда А. Эйнштейн пришел к универсальной зависимости между полной энергией тела Е и его массой т:

(13.26)

Уравнение (13.26), равно как и (13.25), выражает фундаментальный закон природы – закон взаимосвязи (пропорциональности) массы и энергии:полная энергия системы равна произведению ее массы на квадрат скорости света в вакууме. Отметим, что в полную энергию Е не входит потенциальная энергия тела во внешнем силовом поле.

Учитывая выражение (13.23), закон (13.26) можно записать в виде Е = т0 с2 + Т, откуда следует, что покоящееся тело (Т = 0) также обладает энергией Е0 = т0с2, называемой энергией покоя.Классическая механика энергию покоя Е0 не учитывает, считая, что при v =0 энергия покоящегося тела равна нулю.

В силу однородности времени в релятивистской механике, как и в классической, выполняется закон сохранения энергии:полная энергия замкнутой системы сохраняется, т.е. не изменяется с течением времени.

Из формул (13.26) и (13.20) найдем релятивистское соотношение между полной энергией и импульсом частицы:

, (13.27)

Возвращаясь к уравнению (13.26), отметим еще раз, что оно имеет универсальный характер. Оно применимо ко всем формам энергии, т.е. можно утверждать, что с энергией, какой бы формы она ни была, связана масса

т = Е/с2, (13.28)

и, наоборот, со всякой массой связана определенная энергия (13.20).

Рассматривая выводы специальной теории относительности, видим, что она, как, впрочем, и любые крупные открытия, потребовала пересмотра многих установившихся и ставших привычными представлений. Масса тела не остается постоянной величиной, а зависит от скорости тела; длина тел и длительность событий не являются абсолютными величинами, а носят относительный характер; наконец, масса и энергия оказались связанными друг с другом, хотя они и являются качественно различными свойствами материи.

Эту ломку укоренившихся представлений некоторые философы пытались использовать для распространения двух разновидностей идеализма: энергетизма и философского релятивизма. Первая из этих теорий рассматривала возможность преобразования массы в энергию и, наоборот, энергии в массу, доказывая «эквивалентность материи и энергии». Закон взаимосвязи массы и энергии действительно утверждает, что любые превращения энергии тела сопровождаются изменениями его массы, однако при этом масса не «переходит в энергию». Закон взаимосвязи массы и энергии является подтверждением неразрывности материи и движения – одного из основных положений диалектического материализма.

Основной вывод теории относительности сводится к тому, что пространство и время органически взаимосвязаны и образуют единую форму существования материи – пространство-время. Только поэтому пространственно-временной интервал между двумя событиями является абсолютным, в то время как пространственные и временные промежутки между этими событиями относительны. Следовательно, вытекающие из преобразований Лоренца следствия являются выражением объективно существующих пространственно-временных соотношений движущейся материи.

 

Контрольные вопросы

 

1. В чем физическая сущность механического принципа относительности?

2. В чем заключается правило сложения скоростей в классической механике?

3. 3.Каковы причины возникновения специальной теории относительности?

4. В чем заключаются основные постулаты специальной теории относительности?

5. Зависит ли от скорости движения системы отсчета скорость тела? скорость света?

6. Запишите и прокомментируйте преобразования Лоренца. При каких условиях они переходят в преобразования Галилея?

7. Какой вывод о пространстве и времени можно сделать на основе преобразований Лоренца?

8. 8.Одновременны ли события в системе К', если в системе К они происходят в одной точке и одновременны? в системе А" события разобщены, но одновременны? Обосновать ответ.

9. Какие следствия вытекают из специальной теории относительности для размеров тел и длительности событий в разных системах отсчета? Обосновать ответ.

10. При какой скорости движения релятивистское сокращение длины движущегося тела составит 25%?

11. В чем состоит «парадокс близнецов» и как его разрешить?

12. В чем заключается релятивистский закон сложения скоростей? Как показать, что он находится в согласии с постулатами Эйнштейна?

13. Как определяется интервал между событиями? Доказать, что он является инвариантом при переходе от одной инерциальной системы отсчета к другой.

14. Какой вид имеет основной закон релятивистской динамики материальной точки? Чем он отличается от основного закона ньютоновской механики?

15. В чем заключается закон сохранения релятивистского импульса? релятивистской массы?

16. Как выражается кинетическая энергия в релятивистской механике?

17. При каком условии релятивистская формула для кинетической энергии переходит в классическую формулу?

18. Сформулируйте и запишите закон взаимосвязи массы и энергии. В чем его физическая сущность? Приведите примеры его экспериментального подтверждения.


 

Учебное издание

 








Дата добавления: 2015-08-08; просмотров: 665;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.036 сек.