Понятие канонического разложения случайного процесса
Случайная величина V называется центрированной, если ее математическое ожидание равно 0. Элементарным центрированным случайным процессом называется произведение центрированной случайной величины V на неслучайную функцию φ(t): X(t)=V φ(t). Элементарный центрированный случайный процесс имеет следующие характеристики:
Выражение вида , где φk(t), k=1;2;…-неслучайные функции; , k=1;2;…-некоррелированные центрированные случайные величины, называется каноническим разложением случайного процесса X(t), при этом случайные величины называются коэффициентами канонического разложения; а неслучайные функции φk(t) - координатными функциями канонического разложения.
Рассмотрим характеристики случайного процесса
Так как по условию то
Очевидно, что один и тот же случайный процесс имеет различные виды канонического разложения в зависимости от выбора координатных функций. Более того, даже при состоявшемся выборе координатных функций существует произвол в распределении случайных величин Vк. На практике по итогам экспериментов получают оценки для математического ожидания и корреляционной функции: . После разложения в двойной ряд Фурье по координатным функциям φк(t):
получают значения дисперсий случайных величин Vk.
Дата добавления: 2015-07-30; просмотров: 1238;