Морфофункциональная организация коры больших полушарий 7 страница

Основная роль проводящих путей — установление двусторонней связи между спинным мозгом и отделами головного мозга.

Это имеет огромное значение для организма: двусто-ронняя связь обеспечивает согласованное участие всех органов в рефлекторных реакциях.

Функции спинного мозга

Спинной мозг выполняет две функции: проводниковую и рефлекторную. Через спинной мозг проводится возбуждение от органов к головному мозгу и от него к органам. Некоторые волокна проходят из одной половины спинного мозга в другую, связывая их друг с другом. Проведение возбуждения является одной из функций спинного мозга.

К спинному мозгу подходит большинство центростремительных нервов. От него начинаются центробежные нервы. Войдя через задние (чувствительные) корешки, центростремительные волокна соединяются со вставочными нейронами. С них возбуждение передается на центробежные волокна, выходящие через передние (двигательные) корешки спинного мозга. Другими словами, через спинной мозг проходят рефлекторные дуги безусловных рефлексов.

ВОПРОС№34

Продолговатый мозг, так же как и спинной, выполняет две функции - рефлекторную и проводниковую. Из продолговатого мозга и моста выходят восемь пар черепных нервов (с V по XII) и он, так же как и спинной мозг, имеет прямую чувствительную и двигательную связь с периферией. По чувствительным волокнам он получает импульсы - информацию от рецепторов кожи головы, слизистых оболочек глаз, носа, рта (включая вкусовые рецепторы), от органа слуха, вестибулярного аппарата (органа равновесия), от рецепторов гортани, трахеи, легких, а также от интерорецепторов сердечно-сосудистой системы и системы пищеварения.

Через продолговатый мозг осуществляются многие простые и сложнейшие рефлексы, охватывающие не отдельные метамеры тела, а системы органов, например системы пищеварения, дыхания, кровообращения. Рефлекторную деятельность продолговатого мозга можно наблюдать на бульбарной кошке, т. е. кошке, у которой произведена перерезка ствола мозга выше продолговатого. Рефлекторная деятельность такой кошки сложна и многообразна.

Через продолговатый мозг осуществляются следующие рефлексы:

Защитные рефлексы: кашель, чиханье, мигание, слезоотделение, рвота.

Пищевые рефлексы: сосание, глотание, сокоотдение (секреция) пищеварительных желез.

Сердечно-сосудистые рефлексы, регулирующие деятельность сердца и кровеносных сосудов.

В продолговатом мозге находится автоматически работающий дыхательный центр, обеспечивающий вентиляцию легких.

В продолговатом мозге расположены вестибулярные ядра.

От вестибулярных ядер продолговатого мозга начинается нисходящий вестибулоспинальный тракт, участвующий в осуществлении установочных рефлексов позы, а именно в перераспределении тонуса мышц. Бульбарная кошка ни стоять, ни ходить не может, но продолговатый мозг и шейные сегменты спинного обеспечирают те сложные рефлексы, которые являются элементами стояния и ходьбы. Все рефлексы, связанные с функцией стояния, называются установочными рефлексами. Благодаря им животное вопреки силам земного притяжения удерживает позу своего тела, как правило, теменем кверху.

Особое значение этого отдела центральной нервной системы определяется тем, что в продолговатом мозге находятся жизненно важные центры - дыхательный, сердечно-сосудистый, поэтому не только удаление, а даже повреждение продолговатого мозга заканчивается смертью.

Помимо рефлекторной, продолговатый мозг выполняет проводниковую функцию. Через продолговатый мозг проходят проводящие пути, соединяющие двусторонней связью кору, промежуточный, средний мозг, мозжечок и спинной мозг.

ВОПРОС№35

Через средний мозг, являющийся продолжением ствола мозга, проходят восходящие пути от спинного и продолговатого мозга к таламусу, коре больших полушарий и мозжечку.

В состав среднего мозга входят четверохолмия, черная субстанция и красные ядра. Срединную его часть занимает ретикулярная формация (см. § 6 этой главы), нейроны которой оказывают мощное активирующее влияние на всю кору больших полушарий, а также на спинной мозг.

Передние бугры четверохолмия представляют собой первичные зрительные центры, а задние бугры—первичные слуховые центры. Ими осуществляют также ряд реакций, являющихся компонентами ориентировочного рефлекса при появлении неожиданных раздражителей. В ответ на внезапное раздражение происходит поворот головы и глаз в сторону раздражителя, а у животных—настораживания ушей. Этот рефлекс (по И. П. Павлову, рефлекс «Что такое?») необходим для подготовки организма к своевременной реакции на любое новое воздействие. Он сопровождается усилением тонуса мыщц-сгибателей (подготовка к двигательной реакции) и изменениями вегетативных функций (дыхание, сердцебиения).

Средний мозг играет важную роль в регуляции движений глаз. Управление глазодвигательным аппаратом осуществляют расположенные в среднем мозгу ядра блокового (IV) нерва, иннервирующего верхнюю косую мышцу глаза, и глазодвигательного (III) нерва иннервирующего верхнюю, нижнюю и внутреннюю прямые мышцы нижнюю косую мышцу и мышцу, поднимающую веко, а также расположенное в заднем мозгу ядро отводящего (VI) нерва, иннервирующего наружную прямую мышцу глаза. С участием этих ядер осуществляются поворот глаза в любом направлении, аккомодация глаза, фиксация взгляда на близких предметах путем сведения зрительных осей, зрачковый рефлекс (расширение зрачков в темноте и сужение их на свету).

У человека при ориентации во внешней среде ведущим является зрительный анализатор, поэтому особое развитие получили передние бугры четверохолмия (зрительные подкорковые центры). У животных с преобладанием слуховой ориентации (собака, летучая мышь), наоборот, в большей степени развиты задние бугры (слуховые подкорковые центры).

Черная субстанция среднего мозга имеет отношение к рефлексам жевания и глотания, участвует в регуляции тонуса мышц (особенно при выполнении мелких движений пальцами рук).

В среднем мозгу важные функции осуществляет красное ядро. О возрастании роли этого ядра в процессе эволюции свидетельствует резкое увеличение его размеров по отношению к остальному объему среднего мозга. Красное ядро тесно связано с корой больших полушарий, ретикулярной формацией ствола, мозжечком и спинным мозгом.

От красного ядра начинается руброспинальный путь к мотонейронам спинного мозга. С его помощью осуществляется регуляция тонуса скелетных мышц, происходит усиление тонуса мышц-сгибателей. Это имеет большое значение как при поддержании позы в состоянии покоя, так и при осуществлении движений. Импульсы, приходящие в средний мозг от рецепторов сетчатки глаза и от проприорецепторов глазодвигательного аппарата, участвуют в осуществлении глазодвигательных реакций, необходимых для ориентации в пространстве, выполнении точностных движений.

ВОПРОС№36

Промежуточный мозг в процессе эмбриогенеза развивается из переднего мозгового пузыря и образует стенки третьего мозгового желудочка. Топографически и функционально промежуточный мозг подразделяется на эпиталамус, таламус и гипоталамус.

Эпиталамус, или надталамическая область, состоит из расположенного под мозолистым телом свода и из железы внутренней секреции эпифиза, которые формируют верхнюю стенку третьего желудочка. Таламус, или зрительный бугор, представляет собой состоящее из скопления серого вещества объемистое тело яйцевидной формы. Нижней и латеральной поверхностью таламус сращен с соседними частями мозга. Медиальная поверхность зрительного бугра образует боковую стенку полости третьего желудочка. Таламус является крупным подкорковым образованием, через которое в кору больших полушарий проходят разнообразные афферентные пути.

Дно третьего желудочка формирует группа структур, которые объединяют под названием гипоталамуса или подбугорья. Гипоталамус содержит большое количество ядер и является центром регуляции висцеральных функций организма (см. разд. 3.7.3).

ВОПРОС№37

Чем сложнее (точнее, осмысленнее, предметнее) двигательная задача, тем более высоким является «уровень построения движения» и тем более высокие уровни нервной системы принимают участие в решении этой задачи и реализации соответствующих движений.

Н.А. Бернштейн выделил и подробно описал пять основных уровней построения движений, обозначив их латинскими буквами А, В, С, D, Е.

Самый древний в филогенетическом отношении — уровень А, который называется уровнем «палеокинетических регуляций», или руброспинальным, по названию анатомических «субстратов», которые отвечают за построение движений на этом уровне: «красное ядро» выступает «высшей» регулирующей инстанцией этого уровня построения движений, к которому имеют отношение и другие подкорковые структуры. Система данных структур обеспечивает поступление и анализ проприоцептивной информации от мышц, удержание определенной позы, некоторые быстрые ритмические вибрационные движения (например, вибрато у скрипачей), а также ряд непроизвольных движений (дрожь от холода, вздрагивание, стучание зубами от страха). Уровень А у человека практически никогда не бывает ведущим уровнем построения движений.

Второй — уровень В — называется также уровнем «синергии и штампов», или таламо-паллидарным уровнем, поскольку его анатомическим субстратом являются «зрительные бугры» и «бледные шары». Он отвечает за так называемые синергии, т.е. высокослаженные движения всего тела, за ритмические и циклические движения типа «ходьбы» у младенцев, «штампы» — например, стереотипные движения типа наклонов, приседаний. Этот уровень обеспечивает анализ информации о расположении отдельных конечностей и мышц безотносительно к конкретным условиям осуществления соответствующих движений. Поэтому он отвечает, например, за бег вообще (скажем, за бег на месте) как переменную работу различных групп мышц. Однако реальный бег совершается по какой-нибудь конкретной поверхности со своими неровностями и препятствиями, и чтобы он стал возможным, необходимо подключение других, более высоких уровней построения движений. Этот уровень отвечает также за автоматизацию различных двигательных навыков, выразительную мимику и эмоционально окрашенные пантомимические движения.

Уровень С, называемый уровнем пространственного поля, или пирамидно-стриальным, поскольку его анатомическим субстратом выступают уже некоторые корковые структуры, образующие так называемые пирамидные и экстрапирамидные системы, обеспечивает ориентацию субъекта в пространстве. Движения, выполняемые на данном уровне, носят отчетливо целевой характер: они ведут откуда-то, куда-то и зачем-то. Соответственно они имеют начало, середину и конец. Таковы, к примеру, плавание, прыжки в длину, высоту, вольные акробатические упражнения, движения рук машинистки или пианиста по клавиатуре, движения наматывания, т.е. такие, где требуется учет «пространственного поля».

Еще более высоким уровнем является уровень D, называемый также теменно-премоторным, поскольку его анатомическим субстратом являются исключительно кортикальные структуры в те-менно-премоторных областях. Он называется также уровнем предметных действий, поскольку обеспечивает взаимодействие с объектами в соответствии с их предметными значениями. Примеры движений на этом уровне: питье из чашки, снятие шляпы, завязывание галстука, изображение домика или человека. Если вспомнить структуру деятельности, по А.Н.Леонтьеву, то речь идет о выполнении именно действий, а не операций, т.е. цель действия, строящегося на этом уровне, может быть достигнута разными способами (за осуществление операций отвечают другие уровни).

Наконец, уровень Е (Н. А. Бернштейн говорил, что этот уровень наименее изучен в физиологии активности, — возможно, это даже не один, а несколько уровней) отвечает за «ведущие в смысловом отношении координации речи и письма», которые объединены уже не предметом, а отвлеченным заданием или замыслом. Таковы, например, речевые и другие движения читающего лекцию преподавателя, танец балерины и т.п. Здесь речь уже идет о передаче научных знаний или замысла художника, что предполагает -исключительно произвольный уровень регуляции разворачивающихся действий. Анатомический субстрат движений данного уровня еще не вполне изучен, хотя Н. А. Бернштейн подчеркивал несомненное участие в произвольной регуляции движений лобных долей коры головного мозга, ссылаясь на работы А. Р.Лурия.

Как правило, в построении действий человека принимают участие структуры всех уровней, хотя иногда более простые движения регулируются лишь низшими уровнями. В принципе одно и то же движение может строиться на различных уровнях, если включается в решение разных задач. Строго говоря, это движение не будет «одним и тем же» (как было показано выше, даже амплитуда движений рук раненых бойцов увеличивается, если больной выполняет более значимую для него работу). Поэтому можно изменить характер протекания движений, изменив его смысл для человека.

Из вышеизложенного явствует, что концепция неклассической физиологии Н.А. Бернштейна помогает подойти к диалектическому решению психофизиологической проблемы. Анатомо-физиологические структуры здесь всего лишь инструменты для реализации задач деятельности субъекта. То, какие именно структуры участвуют в обеспечении построения движений человека, зависит от того, какое место занимает это движение в структуре деятельности субъекта, какой смысл оно имеет для него. Образно говоря, мозг и нервная система в целом — инструмент, с помощью которого человек «проигрывает мелодии своей жизни».

Мы не должны, однако, забывать, что устройство этого инструмента также заслуживает своего изучения в психологии, поскольку ни один из психических процессов, обеспечивающих ориентировку субъекта в мире и регуляцию его деятельности, невозможен без нормально работающего мозга. Естественно, патология мозговой деятельности приводит к ограничениям (иногда весьма существенным) в формировании адекватной деятельности субъекта, подобно тому как поломанный или расстроенный инструмент не позволяет музыканту извлечь достойную музыку (хотя, впрочем, Н.Паганини мог играть и на одной струне). Обратимся поэтому к некоторым аспектам работы головного мозга, изучаемым в психологии при решении разных задач, и в частности в связи с практическими запросами к нейропсихологии, одним из создателей которой был А. Р.Лурия

ВОПРОС№38

Функция большинства желез внутренней секреции регулируется гормонами передней доли гипофиза ( аденогипофиза ). На высвобождение этих гормонов в свою очередь влияют гормоны нейронов гипофизотропной зоны медиальной области гипоталамуса , которые оказывают либо стимулирующее, либо тормозное действие на гипофиз и называются соответственно рилизинг-факторы и ингибирующие факторы . Рилизинг-факторы высвобождаются из нервных отростков в области срединного возвышения и через гипоталамо-гипофизарную систему с кровью поступают к аденогипофизу. Принцип регуляции заключается в том, что при повышении содержания в плазме гормонов периферических эндокринных желез уменьшается выброс соответствующего рилизинг-фактора в кровеносные сосуды медиальной области гипоталамуса. Регуляция по принципу отрицательной обратной связи, в которой участвуют медиальный гипоталамус , гипофиз и периферические эндокринные железы , действует даже в отсутствии влияний со стороны ЦНС . Регуляция сохраняется после полного отделения медиальной области гипоталамуса от остальных отделов ЦНС. Роль ЦНС заключается в приспособлении этой регуляции к внутренним и внешним потребностям организма. Например, при стрессе возрастает секреция кортизола корой надпочечников в результате того, что увеличивается активность нейронов медиальной области гипоталамуса, что ведет к усиленному выделению рилизинг-фактора в срединном возвышении.

Гипоталамус оказывает регулирующее воздействие на многочисленные вегетативные функции организма. Это влияние происходит через нейрогипофиз и аденогипофиз .

Гипоталамические гормоны выделяются в кровь непосредственно через нейрогипофиз .

Нейросекрет ядер гипоталамуса через воротную систему действует на железистые клетки аденогипофиза , усиливая или тормозя секрецию ряда гормонов. Аденогипофизарные гормоны в свою очередь регулируют деятельность других желез внутренней секреции .

Гипоталамус и гипофиз объединяют в особую нейрогормональную гипоталамо-гипофизарную систему ( рис. 42 , рис. 43 ).

Центральная регуляция гипоталамо-гипофизарной эндокринной системы осуществляется преимущественно центрами преоптической области , лимбической системы и среднего мозга . Влияние этих центров переключается через латеральную область гипоталамуса . Полагают, что сигналы от этих центров передаются нейронами, медиаторами которых служат норадреналин , дофамин или сератонин . Возможно, к этим центрам также поступает информация о содержании эндокринных гормонов в плазме крови по принципу обратной связи. Нейроны, входящие в состав регуляторных систем, способны специфически реагировать на гормоны эндокринных желез и накапливать их.

В тесном взаимодействии нервных и эндокринных структур гипоталамуса можно убедиться на примере связей нейронов гипофизотропной зоны . На нейрон, секретирующий какой-либо рилизинг-фактор, могут оказывать влияние афферентные нейроны лимбической системы (миндалины и гипокампа), преоптической области и передней части гипоталамуса . Двигательные отростки этого нейрона идут к самым различным отделам головного мозга . Такие нейроны обладают свойством саморегуляции по принципу возвратного торможения. Во всех двигательных отростках подобных нейронов медиатором, видимо, служит рилизинг-фактор. Таким образом, эти клетки гипофизотропной зоны являются, с одной стороны, конечными интегрирующими клетками , а с другой - эндокринными клетками , образующими гормон.

 

ВОПРОС№39

Гипоталамус контролирует деятельности эндокринной системы человека благодаря тому, что его нейроны способны выделять нейроэндокринные трансмиттеры (либерины и статины), стимулирующие или угнетающие выработку гормонов гипофизом. Иными словами, гипоталамус, масса которого не превышает 5% мозга, является центром регуляции эндокринных функций, он объединяет нервные и эндокринные регуляторные механизмы в общую нейроэндокринную систему. Гипоталамус образует с гипофизом единый функциональный комплекс, в котором первый играет регулирующую, второй — эффекторную роль.

ВОПРОС№40

12.1. Структурная организация и связи мозжечка.

У млекопитающих мозжечок - крупный вырост варолиева моста, состоящий из двух полушарий и непарного отдела - червя. Со стволовой частью мозга мозжечок соединяется тремя парами ножек. Самые толстые средние ножки как бы охватывают продолговатый мозг и, расширяясь, переходят в варолиев мост. Верхние ножки начинаются в зубчатых ядрах мозжечка (см. ниже) и направляются к четверохолмию среднего мозга. Третья пара ножек (нижняя) спускается вниз, сливаясь с продолговатым мозгом. Афферентные волокна, приходящие в мозжечок, преимущественно входят в состав средних и нижних ножек, тогда как эфферентные собраны главным образом в верхних ножках мозжечка.

Вся поверхность мозжечка разделяется глубокими бороздами на доли. В свою очередь, каждая доля параллельными бороздками разделяется на извилины; группы извилин формируют дольки мозжечка. Каждую дольку обозначают как классическим названием (язычок, центральная, вершина и т. д.), так и латинской нумерацией (1-Х) в соответствии с распространенной номенклатурой (рис. ).

Согласно О. Ларселу, всю эверхность мозжечка можно разделить на отделы в зависимости от характера поступающих афферентных

А - отделы и доли мозжечка, Б - расположение связей в коре мозжечка. I - X - обозначение долей мозжечка по но менклатуре Ларсела, I - передняя доля 2 - задняя доля 3 - парафлокхулярный отдел, 4 - флоккулонодулярная доля 5 - корзинчатая клет ка 6 - клетка Пуркинье 7 - лазающее волокно, 8 - клетка зерно, 9 - клетка внутримозжеч кового ядра, 10 - клетка Гольджи ,11 - мшистое волокно .

путей и филогенетического возраста структурных образований. Наиболее изолированная флоккулонодулярная доля (X) составляет древний мозжечок (архицеребеллум), гомологичный мозжечку круг-лоротых. Здесь заканчиваются проекции от вестибулярных ядер продолговатого мозга. Следующий отдел мозжечка - старый мозжечок, или палеоцеребеллум, - включает в себя участки червя, соответствующие передней доле, пирамиды, язычок и парафлокку-лярный отдел. В палеоцеребеллуме находятся проекции восходящих спинно-мозжечковых трактов, несущих информацию от мышечных рецепторов. И наконец, третий отдел - новый мозжечок, или неоцеребеллум, - состоит из появляющихся у млекопитающих полушарий и участков червя, которые расположены каудальнее первой борозды. К неоцеребеллуму по трактам, переключающимся в ядрах варолиева моста, поступает афферентная импульсация от обширных областей коры больших полушарий (лобных, теменных, височных и затылочных долей).

Полушария и червь мозжечка состоят из лежащего на периферии серого вещества - коры - и расположенного глубже белого вещества, в котором заложены скопления нервных клеток, образующие ядра мозжечка. Кора мозжечка представлена тремя слоями, каждый из которых имеет определенный набор клеточных элементов. Самый поверхностный слой - молекулярный - состоит из параллельных волокон и разветвлений дендритов и аксонов нейронов нижележащих слоев. В нижней части молекулярного слоя расположены тела корзиночных клеток, аксоны которых оплетают тела и начальные сегменты аксонов клеток Пуркинье . Здесь же в молекулярном слое имеется некоторое количество звездчатых клеток.

Вентральнее молекулярного слоя находится ганглиозный слой, в котором сосредоточены тела клеток Пуркинье. Эти крупные клетки ориентированы вертикально по отношению к поверхности коры мозжечка. Их дендриты поднимаются вверх и широко ветвятся в молекулярном слое. Дендриты клеток Пуркинье содержат множество шипиков, на которых образуют синапсы параллельные волокна молекулярного слоя. Аксоны клеток Пуркинье спускаются к ядрам мозжечка. Часть на них заканчивается на вестибулярных ядрах. Практически аксоны клеток Пуркинье представляют собой единственный выход из коры мозжечка.

Под ганглиозным слоем лежит гранулярный слой, который содержит большое число тел клеток-зерен, или гранулярных клеток. По некоторым подсчетам их число может достигать 10 млрд. Аксоны клеток-зерен поднимаются вертикально вверх в молекулярный слой и там Т-образно ветвятся. Ветви идут параллельно поверхности коры и образуют синапсы на дендритах других клеток. Здесь же в гранулярном слое лежат клетки Гольджи, аксоны которых подходят к клеткам-зернам.

Афферентный вход к нейронному аппарату коры осуществляется по трем системам волокон. Это, во-первых, лазающие, или лиано-видные, волокна, идущие из нижних олив продолговатого мозга. Нижняя олива получает афференты от нескольких восходящих трактов спинного мозга и из центров головного мозга. Лазающие волокна широко ветвятся и подобно лианам оплетают дендриты клеток Пуркинье, формируя на них синапсы. Вторая система афферентных волокон - это мшистые, или моховидные, волокна, идущие от ядер моста и оканчивающиеся на клетках-зернах. Мшистые волокна многократно ветвятся и образуют синапсы на множестве клеток коры мозжечка. И наконец, третья система афферентных волокон - это также широко ветвящиеся адренэргические волокна, поступающие в кору мозжечка из голубого пятна в среднем мозгу. Голубое пятно представляет собой скопление из нескольких сотен нейронов, аксоны которых способны диффузно выбрасывать норадреналин в межклеточное пространство. Вероятно, эти нейроны выполняют нейромодуляторную функцию и могут изменять возбудимость нейронов, локализованных в коре мозжечка.

Нейрофизиологические исследования Дж. Экклса показали, что корзинчатые и звездчатые клетки, которые заканчиваются синапсами на клетках Пуркинье, вызывают в них тормозные постсинаптические потенциалы (ТПСП) и подавление импульсной активности. Клетки Гольджи тормозят клетки-зерна по принципу обратной связи .

Таким образом, большинство связей, опосредованных интернейронами коры мозжечка, являются тормозными. Исключение составляют только клетки-зерна, которые возбуждаются от мшистых волокон и сами через Т-образно ветвящиеся аксоны активируют все остальные интернейроны коры мозжечка. Однако конечный эффект этой активации опять-таки сводится к торможению.

Клетки Пуркинье, которые представляют собой выход функциональной системы, могут возбуждаться прямо через лиановидные волокна и опосредованно через моховидные волокна и клетки-зерна. Возникающие под действием этого возбуждения разряды клеток Пуркинье, согласно электрофизиологическим данным, вызывают в конечном итоге торможение нейронов ядер мозжечка. Эти факты свидетельствуют о том, что деятельность всей нейрональной системы коры мозжечка сводится к торможению ядер, над которыми кора надстроена. Очевидно, механизм этого торможения можно представить следующим образом.

В покое клетки Пуркинье обладают фоновой электрической активностью, которая вызывает тоническое торможение нейронов в ядрах мозжечка. Возбуждение клеток Пуркинье через систему ли-ановидных или мшистых волокон приводит к увеличению частоты импульсных разрядов этих нейронов и, как следствие, к усилению торможения ядер мозжечка. Напротив, торможение клеток Пуркинье, вызванное звездчатыми или корзинчатыми клетками, сопровождается растормаживанием нейронов в ядрах мозжечка. Сами же ядра мозжечка, обладающие постоянной тонической активностью, через нисходящие пути регулируют уровень возбудимости центров спинного мозга и мышечный тонус.

Согласно гипотезе, высказанной Дж. Экклсом, большое количество тормозных нейронов в коре мозжечка предотвращает длительную циркуляцию возбуждения по нейронным цепям. Любой возбуждающий импульс, приходя в кору мозжечка, превращается в торможение за время порядка 100 мс. Так происходит как бы автоматическое стирание предшествующей информации, которое позволяет коре мозжечка участвовать в регуляции быстрых движений.

В белом веществе мозжечка сконцентрированы три пары ядер. В белом веществе червя близко к срединной плоскости находится ядро шатра, или фастигиальное ядро. Нейроны этого ядра посылают свои отростки к вестибулярному ядру Дейтерса и к ретикулярной формации продолговатого мозга и варолиева моста, где берет свое начало ретикулоспинальный тракт спинного мозга. Латеральнее фастигиального ядра находится вставочное, или промежуточное, ядро, которое у человека разделяется на шаровидное и пробковидное ядра. От вставочного ядра аксоны идут в средний мозг к красному ядру. Менее развитый афферентный путь от вставочного ядра идет в промежуточный мозг к вентролатеральному ядру зрительного бугра - таламуса - и оттуда к двигательной коре. Латеральнее всех ядер лежит наиболее крупное зубчатое ядро мозжечка, от которого мощные пучки волокон направляются к вентролатеральному ядру таламуса, и далее аксоны нейронов второго порядка проецируются в моторные зоны коры.

К нейронам мозжечковых ядер подходят аксоны клеток Пуркинье. Установлено, что клетки Пуркинье червя устанавливают прямые связи с ядром Дейтерса. Это позволяет иногда относить ядро Дейтерса к внутримозжечковым ядрам по функциональному принципу.

Существует определенная топография связей коры мозжечка с его ядрами. Согласно классификации Бродала, кору мозжечка млекопитающих можно разделить на три продольные зоны: медиальную червячную зону, от которой аксоны клеток Пуркинье проецируются на ядро шатра, промежуточную зону коры, связанную со вставочным ядром, и латеральную зону коры полушарий, дающую проекции к зубчатому ядру. Эта классификация, в основу которой положены эфферентные связи мозжечка, свидетельствует о том, что латеральные отделы мозжечка через зубчатое ядро связаны с более высокими уровнями головного мозга.

В целом мозжечок имеет обширные эфферентные связи со всеми двигательными системами стволовой части мозга: кортикоспинальной, руброспинальной, ретикулоспинальной и вестибулоспинальной. Не менее разнообразными являются и афферентные входы мозжечка.

Афферентная информация в мозжечок от спинного мозга приходит по спинно-мозжечковым трактам (дорсальному и вентральному), ростральному спинно-мозжечковому и кунеоцеребеллярным трактам, по спинооливомозжечковым путям. Кора больших полушарий также посылает афферентные пути в мозжечок, среди которых наиболее важными являются кортикоретикуломозжечковый и це-ребромостомозжечковый тракты.

ВОПРОС№41

Кора большого мозга - филогенетически молодая структура мозга. В процессе эволюции млекопитающих особенно быстро развивалась новая кора, толщина достигла 1-2 мм, а общая ее поверхность у человека составляет около 2200 см2. В состав коры большого мозга входят нейроны, которые в разных ее участках имеют свои особенности. Различают свыше 50 цитоархитектурних полей. Многие из них участвуют в регуляции двигательных функций.

Сенсорные зоны коры большого мозга тесно связаны с моторными зонами, которые лежат перед центральной бороздой, занимая примерно заднюю часть лобной доли. В моторной коре различают: первичную, премоторной и дополнительной моторной области.

Первичная моторная кора находится перед центральной бороздой (поле 4). Как и первая соматосенсорная зона, участок имеет топической организации. Раздражение электрическим током верхней части участка у животных или у людей во время нейрохирургических операций сопровождается сокращением мышц нижней части тела на противоположной стороне. Более 50% поверхности этого участка у человека - это представительство рук и языка, что свидетельствует о развитии этих функций у человека.

Премоторной зона лежит впереди первичной моторной (поле 6) и в глубине сильвиевой борозды. Большинство импульсов из этой зоны вызывает модели движения, включаются группы мышц, которые выполняют определенные функции. Импульсы идут в первичную моторную кору, в базальных ядер, а затем снова в моторную зону через таламус. Эта зона вместе с базальными ядрами, таламусом, первичной моторной корой управляет многими сложными движениями.








Дата добавления: 2015-01-26; просмотров: 1905;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.022 сек.