Морфофункциональная организация коры больших полушарий 3 страница
Для изучения нервной системы удобны регистрация электрической активности и электрическое раздражение отдельных органов, тканей и клеток. Гуморальная регуляция исследуется на основе биохимического анализа и фармакологических воздействий. Электрофизиологические и биохимические методы очень тонкие, и потому требуется серьезная специализация исследователя. Как правило, нервные и гуморальные процессы рассматриваются изолированно друг от друга. Так, еще Н. К. Кольцов, известный русский биолог, разделял химико-психические и нервно-психические способности человека. Однако при обеспечении такой сложной функции как поведение человека, нейрогуморальная система работает как единое целое.
Деятельность гормонов.
Сигналы, поступающие из головного мозга, регулируют синтез гормонов гипофиза, который управляет периферическими эндокринными железами. В свою очередь, деятельность мозговых структур, ответственных за поведение, находится под постоянным контролем гормонов. На поведение человека влияет изменение содержания гормонов в крови, которое происходит как в результате естественных причин, так и при введении гормона в виде фармакологического препарата. Естественные колебания уровня гормонов происходят, например, во время менструального цикла у женщин.
Именно гормоны - причина периодических колебаний эмоционального фона, настроения, что теперь хорошо известно под названием «менструального синдрома». Сдвиги эмоционального фона, т. е. настроения, бывают настолько сильными, что психиатры иногда определяют у таких женщин маниакально-депрессивный психоз. Даже если колебания настроения не имеют такого размаха, который требует госпитализации, они отражаются на повседневном поведении женщины. От настроения зависят как успешное общение человека с другими людьми, так и способности к выполнению физической и умственной работы.
В течение цикла изменяется скорость реакции, поэтому на некоторых предприятиях снимают с работы на конвейере женщин, находящихся в определенной стадии цикла. В разные стадии менструального цикла женщины лучше выполняют различные поведенческие тесты. Например, во время овуляции внимание и способность к запоминанию у женщин минимальны, а речевая функция максимальна.
Многочисленные и разнообразные суточные и сезонные изменения поведения у животных, в том числе у человека, происходят благодаря эндокринной системе. Повышение уровня мелатонина - гормона эпифиза (шишковидной железы) - отмечается ночью и зимой, т. е. при низкой освещенности. С повышенным содержанием мелатонина связывают пониженное настроение большинства населения в зимний период. Поэтому один из методов лечения депрессии - фототерапия (в процессе фототерапии пациент просто смотрит на ярко освещенный экран). В некоторых северных странах, например в Швеции, зимой увеличивают количество фильмов о тропических странах. Благодаря эндокринной системе яркие картины улучшают настроение человека. Тот же мелатонин ответственен и за рост числа психических нарушений весной и осенью, когда длина светового дня стремительно изменяется. Известное весеннее обострение у шизоидных личностей связано с деятельностью эндокринной системы.
Наше самочувствие и соответственно работоспособность меняются в течение суток. Пробуждение организма в утренние часы совпадает с выбросом гормонов, активирующих кору надпочечников: коритоколиберина из гипоталамуса (отдела мозга, непосредственно граничащего с гипофизом) и кортикотропина из гипофиза. Кортиколиберин повышает общую активность центральной нервной системы, подготавливает мозг к работе. Кортикотропин улучшает способности человека к извлечению памятного следа, иначе говоря, «освежает» память. Выброс обоих гормонов усиливается при физических нагрузках на организм, поэтому утренняя зарядка помогает человеку проснуться благодаря активации кортиколибериновой системы.
Кортиколиберин, кортикотропин и кортизол, вырабатываемые в коре надпочечников, относятся к тем стрессорным гормонам, синтез и секреция которых резко возрастают при любых воздействиях на организм. Стрессорная реакция неспецифична, т. е. она имеет общие черты независимо от того, что ее вызвало: важная для нас новость или болезнь, или утренняя зарядка. Одно из таких неспецифических свойств стресса - активация коры надпочечников. Эти гормоны наиболее четко выявляют взаимную связь душевных и телесных состояний человеческого организма. Утренняя зарядка - это пример влияния стресса, вызванного мышечной нагрузкой, на психические функции. Влияние в противоположном направлении - от души к телу - отмечается на спортивных соревнованиях. Волнение перед стартом помогает спортсменам показать значительно более высокие результаты, чем на тренировках. В то же время в спортивной среде хорошо известно понятие «перегореть перед стартом».
Оно означает, что излишнее волнение, т. е. чрезмерный психологический стресс, привел к снижению мышечной работоспособности, скорости реакции и согласованности работы разных групп мышц. Исключительная важность гормонального компонента стрессорной реакции определяется тем, что в некоторых случаях стрессорные гормоны продолжают вырабатываться и после того, как причина стресса исчезла. При этом они оказывают долгосрочное влияние и на психику, и на различные органы человека. Стрессорные гормоны вызывают, таким образом, психосоматические заболевания - болезни тела, основанные на эмоциональных стрессах. К этой группе болезней относятся многообразные патологические изменения организма, начиная от заболеваний сердечнососудистой системы и язвенной болезни, и кончая такими, на первый взгляд, не связанными с психикой заболеваниями, как бесплодие и облысение.
От 30 до 70% пациентов, первично обратившихся в поликлинику к участковому врачу с жалобами на неприятные ощущения в какой-нибудь части тела, нуждаются в консультации психотерапевта, а не в лечении внутренней болезни. Сначала психосоматические болезни, являясь психическими по происхождению, могут быть излечены коррекцией психического состояния. Поскольку чаще всего на психический компонент не обращают внимания, через некоторое время могут развиться настоящие, так называемые органические расстройства. Как правило, к этому времени уровень стрессорных гормонов уже возвращается к норме, и поставить правильный диагноз бывает трудно. Стрессорные гормоны, если неблагоприятные факторы действовали долго, становятся причиной и серьезных психических болезней, когда изменение душевного склада пациента выступает на первый план.
Чаще всего ведущим симптомом оказывается подавленное настроение, которое сопровождается сниженной физической и умственной работоспособностью - депрессивным синдромом. Влияние на психику гормоны стресса могут оказывать и при введении их человеку в качестве лечебного средства. Гормоны коры надпочечников и их производные: кортизол, дексаметазон, преднизолон - широко используются, в частности, для подавления воспаления. При передозировке названных препаратов могут возникать галлюцинации, бред (так называемые кортизоловые психозы). Гормоны влияют на поведение на разных уровнях организации поведенческого акта. На сенсорном уровне они влияют на способность человека к выделению определенных сигналов из внешней среды. Так, зрительная чувствительность у женщин меняется на протяжении менструального цикла.
Самый слабый свет женщина воспринимает во время овуляции, а во время менструации ее зрительная система к слабым световым сигналам наименее чувствительна. Важно, что при этом гуморальным влияниям подвергаются не светочувствительные клетки глаза, а сами процессы, протекающие в головном мозге. От гормонов зависят и определенные предпочтения. Психологическому тестированию подвергли три группы женщин: не принимающих постоянно лекарственных препаратов, регулярно принимающих противозачаточные средства, повышающие прогестерон, и принимающих противозачаточные средства, не изменяющие уровень прогестерона. Им предложили фотографии мужчин с просьбой оценить их привлекательность в баллах. Оказалось, что в отличие от двух других групп женщины, имеющие постоянно высокий уровень прогестерона, более привлекательными находили мужчин с инфантильными чертами внешности: безбородых, с мягкими чертами лица, неатлетическим телосложением.
Гормоны влияют на двигательные механизмы поведения. Наиболее широко известный пример - действие мужских половых гормонов (андрогенов) на мышечную ткань. Чтобы мясо гуся стало нежным, его следует кастрировать за несколько месяцев до праздника Рождества Христова. Это объясняется тем, что андрогены не только стимулируют развитие сперматозоидов и мужскую половую активность, но и способствуют росту мышечной ткани, а также поддерживают высокий уровень обмена веществ в мышечном волокне и нервной ткани. Они обусловливают синтез новых молекул, которые являются строительным материалом клетки и служат для производства энергии. Этот аспект обмена веществ называется анаболическим, а препараты, которые его стимулируют, анаболиками. Анаболики получают, модифицируя молекулы природных андрогенов таким образом, чтобы усилить их эффект на мышечную ткань и ослабить их влияние на половую и центральную нервную системы.
Тем не менее полностью избавиться от этих эффектов не удается. В результате профессиональные спортсмены, а тем более люди, принимающие анаболики самостоятельно, без рекомендации врача, как правило, страдают половыми расстройствами и болезнями, связанными с нарушением работы центральной нервной системы. Следует отметить, что пропорциональная зависимость потенции от уровня андрогенов - это заблуждение. Для совершения полового акта необходим некий уровень гормона. Его дальнейшее повышение не приводит к увеличению половых способностей мужчины. Неоднократно проводились исследования, в ходе которых добровольцы сообщали о своей половой активности и сдавали кровь для определения половых гормонов.
Не было обнаружено зависимости между содержанием андрогенов в крови и частотой половых актов. Более того, содержание андрогенов в крови повышается в результате половой активности человека, а не наоборот. Одно время андрогены называли «гормонами агрессии». В Германии, например, штурмовым отрядам перед атакой делали инъекции тестерона, а в США серийных убийц кастрировали, стараясь таким образом снизить их агрессивность. Однако в экспериментах выяснилось, что степень агрессии зависит, в первую очередь, от предшествующего опыта, а не от гормонального фона.
Только крайние значения половой и агрессивной активности соответствуют очень высокому и очень низкому содержанию андрогенов. Эти крайние формы связаны, как правило, с врожденными аномалиями, например с лишней половой хромосомой. У таких людей отмечаются не только высокий уровень андрогенов и повышенная агрессивность, но и ряд других аномалий: резко сниженная болевая чувствительность, характерные изменения внешности, склонность к антисоциальным формам поведения. В основной же популяции здоровых людей зависимость между содержанием гормона и выраженностью агрессивного поведения отсутствует. Приведем пример наблюдения за женщинами-культуристками, подтверждающий сложную взаимную зависимость поведения, обмена веществ и гормонального фона.
Как известно, в культуризме оценивается объем мышц, а не их способность к работе. Вот почему для быстрого увеличения мышечной массы культуристы особенно склонны к употреблению анаболиков. По мере увеличения мышечной массы и уменьшения массы жировой ткани в ходе тренировок у культуристок сначала ослабляется либидо, а затем даже прекращается нормальный менструальный цикл. Специальные опыты на крысах показали, что, действительно, определенное соотношение жировой и мышечной массы необходимо для нормальной работы женской половой системы. Таким образом, процессы обмена веществ, которые регулируются гормонами, могут оказывать воздействие на гормональные показатели. В этом случае реализуется один из фундаментальных принципов регуляции живых систем - принцип обратной связи, согласно которому часть сигнала, выходящего из системы, поступает на ее вход, ослабляя или усиливая продукцию данного сигнала.
ВОПРОС№18
ЭНДОКРИННАЯ ФУНКЦИЯ ГИПОТАЛАМО-ГИПОФИЗНОЙ СИСТЕМЫ
Болезни эндокринной системы - ЛЕЧЕНИЕ за ГРАНИЦЕЙ – TreatmentAbroad.ru – 2007
Сейчас гипоталамус рассматривают не только как центр регуляции работы вегетативной нервной системы, температуры тела, но и как эндокринныый орган.
Гипоталамус представляет собой образование из нервной ткани, расположенное в головном мозге. В гипоталамусе содержится огромное число отдельных групп нервных клетках, которые называются ядрами. Общее число ядер около 150.
Гипоталамус имеет большое количество связей с различными участками нервной системы и выполняет множество функций, которые до конца еще не изучены, так же, как и не известно, назначение многих его ядер.
Эндокринная функция гипоталамуса тесно связана с работой нижнего мозгового придатка – гипофиза. В клетках и ядрах гипоталамуса выделяются:
Гипоталамические гормоны – либерины и статины, которые регулируют гормонпродуцирующую функцию гипофиза.
Тиреолиберин – стимулирует выработку тиротропина в гипофизе.
Гонадолиберин – стимулирует выработку в гипофизе гонадотропных гормонов.
Кортиколиберин – стимулирует выработку в гипофизе кортикотропина.
Соматолиберин – стимулирует выработку в гипофизе гормона роста – соматотропина.
Соматостатин – угнетает выработку в гипофизе гормона роста.
Эти гормоны, синтезированные гипоталамусом, поступают в особую кровеносную систему, связывающую гипоталамус с передней долей гипофиза. Два из ядер гипоталамуса производят гормоны вазопрессин и окситоцин. Окситоцин стимулирует выделение молока во время лактации. Вазопрессин или антидиуретический гормон контролирует водный баланс в организме, под его влиянием усиливается обратное всасывание воды в почках. Эти гормоны накапливаются в длинных отростках нервных клеток гипоталамуса, которые заканчиваются в гипофизе. Таким образом, запас гормонов гипоталамуса окситоцина и вазопрессина хранится в задней доле гипофиза.
Гипофиз или нижний мозговой придаток называют главной эндокринной железой организма человека. Он расположен в костной полости, которая называется турецким седлом. Гипофиз расположен на основании головного мозга и прикрепляется к мозгу тонким стеблем. По этому стеблю гипофиз связан с гипоталамусом. Гипофиз состоит из передней и задней долей. Промежуточная доля у человека недоразвита. В передней доле гипофиза, ее называют аденогипофиз, производится шесть собственных гормонов. В задней доле гипофиза, называемой нейрогипофиз, накапливаются два гормона гипоталамуса – окситоцин и вазопрессин.
Гормоны, которые производит передняя доля гипофиза:
Пролактин. Этот гормон стимулирует лактацию (образование материнского молока в молочных железах).
Соматотропин или гормон роста – регулирует рост и участвует в обмене веществ.
Гонадотропины
– лютеинизирующий и фолликулостимулирующий гормоны. Они контролируют половые функции у мужчин и женщин.
Тиротропин. Тиротропный гормон регулирует работу щитовидной железы.
Адренокортикотропин. Адренокортикотропный гормон стимулирует выработку глюкокортикоидных гормонов корой надпочечников.
Передняя доля гипофиза или аденогипофиз регулирует, таким образом, работу трех желез-мишеней.
При недостаточности или удалении желез-мишеней, возрастает концентрация регулирующего гормона, так как организм пытается восстановить нормальный уровень гормонов. В этом случае возникают состояния недостаточности функции желез при избыточной продукции стимулирующих гормонов гипофиза.
При недостаточности функции половых желез возникает первичный гипергонадотропный гипогонадизм (недостаточность функции половых желез при избыточном уровне фоллитропина и лютропина).
При недостаточности коры надпочечников возникает адиссонова болезнь (недостаточность гормонов коры надпочечников при избыточном уровне адренокортикотропина).
При недостаточности функции щитовидной железы возникает первичный гипотироз (недостаточность гормонов щитовидной железы при избыточном уровне тиротропина).
Если же разрушен или удален сам гипофиз – исчезает его тропная (стимулирующая) функция и тропные гормоны не вырабатываются. В этом случае из-за отсутствия стимулирующего действия тропных гормонов гипофиза возникают:
Вторичный гипогонадотропный гипогонадизм.
Вторичная надпочечниковая недостаточность.
Вторичный гипотироз.
При этом исчезают также пролактин и гормон роста, и их действие. Выработка же окситоцина и вазопрессина не нарушается, поскольку их производит гипоталамус.
ВОПРОС№19
Нейрон, или нейроцит, состоит из тела и отростков. У каждого нейрона есть один длинный, обычно не ветвящийся или слабо ветвящийся аксон, по которому возбуждение передается от одного нейрона к другому. Аксон, однако, может сильно ветвиться на дальнем от тела конце. Эти ветвления аксона называют аксонными терминалями (окончаниями), или телодендроном.
Место нейрона, от которого начинается аксон, имеет особое функциональное значение и называется аксонным холмиком. Здесь, по сути, решается возможность формирования сигнала, который будет передан другим клеткам. Этот сигнал генерируется как потенциал действия, который представляет собой специфический электрический ответ мембраны возбудившейся нервной клетки. Функцией же аксона является проведение нервного импульса к аксонным терминалям. По ходу аксона могут образовываться его ответвления - коллатерали. Коллате-рали могут возвращаться в тот же нервный центр, в котором находится клетка, или связывать ее с соседними областями. Дендриты не обязательны, но обычно нейрон (кроме униполярных или одноотростчатых клеток) содержит от одного до множества дендритов. Основной функцией дендритов является сбор информации от множества других нейронов.
Нейроны новорожденного имеют меньшее число дендритов (меж-нейронных связей). С возрастом их содержание неуклонно увеличивается, что сопровождается возрастанием массы мозга, которое интенсивно продолжается в ранние постнатальные сроки онтогенеза и затягивается вплоть до полового созревания. У человека увеличение массы мозга продолжается до 30-35 лет.
Большинство аксонов нервной системы позвоночных покрывается миелином. Миелинизацию аксонов осуществляют клетки глии. В центральной нервной системе эту роль выполняют олигодендроциты, в периферической - нейролеммоциты.
Основным свойством нейрона является способность возбуждаться (генерировать электрический импульс) и передавать (проводить) это возбуждение к другим нейронам и клеткам периферических органов.
Форма и размеры нейронов, длина их отростков весьма вариабельны. Диаметр перикариона (тела) нейрона колеблется от 5-8 до 100— 120 мкм. Нейрон может иметь звездчатую, веретеновидную, пирамидную, округлую, грушевидную, овальную и иную форму. Отличаются нейроны и по числу отростков, подразделяясь на униполярные, псев-доуниполярные, биполярные и мультиполярные. В свою очередь мультиполярные клетки могут отличаться числом и разветвленностью дендритов, формой образуемого ими дендритного дерева (распространенностью ветвлений этих отростков в объеме нервной ткани), длиной и распределением отростков нейронов.
На световом уровне при общих методах окрашивания тела нервных клеток имеют оксифильную цитоплазму, крупное ядро округлой или овальной формы. Ядро занимает центральное положение, но иногда смещается к одному из полюсов нейрона, что чаще всего связано с реактивными процессами. В ядре хорошо развито одно или несколько ядрышек. В части нейронов можно видеть два и более ядра (до 10-15). Как правило, это характерно для вегетативных узлов, особенно встроенных в структуру внутренних органов (внутриорганные или интрамуральные ганглии, особенно органов на уровне таза). Такие многоядерные клетки, по сути, являются редуцированными проявлениями клеточной пролиферации, не завершившихся полноценным делением. Кариоплазма отличается преобладанием диффузного (слабо конденсированного) хроматина. Нейроны имеют высокое сродство к солям серебра (аргирофильность). Специфичными для нейрона структурами цитоплазмы на светооптическом уровне являются хроматофильное вещество цитоплазмы и нейрофибриллы. Хроматофильное вещество цитоплазмы (субстанция Ниссля, тигроид, базофильное вещество) проявляется при окрашивании нервных клеток основными красителями (метиленовым синим, толуидиновым синим, гематоксилином и т. д.) в виде зернистости. Зернистость может быть в виде крупных глыбок неправильной формы, иметь сетевидное строение или в виде мелкой зернистости. Это зависит от типа нейрона (крупные нейроны обычно имеют более крупные глыбки) и от его функционального состояния. На электронно-оптическом уровне хроматофильное вещество цитоплазмы есть не что иное, как скопления цистерн гранулярной эн-доплазматической сети. Эти органеллы отсутствуют в аксоне и в аксонном холмике, но имеются в начальных сегментах дендритов. Поэтому тигроид не виден в начале аксона, но прослеживается в дендри-тах, что позволяет идентифицировать вид отростков. Процесс разрушения или распада глыбок хроматофильного вещества цитоплазмы называется тигролизом и наблюдается при реактивных изменениях нейронов (например при повреждении) и их гибели. Тигролиз нередко сопровождается вакуолизацией цитоплазмы, при этом уплощенные цистерны ЭПС разбухают, а цитоплазма приобретает вспененный вид.
Нейрофибрилла - эта структура, выявленная в нейроне одной из первых при помощи классических методов импрегнации серебром. Интересен тот факт, что картина, наблюдаемая нами под микроскопом при импрегнации препаратов нервной ткани, по сути, является множеством артефактов, поскольку этот эффект возникает посмертно, в результате осаждения грубого осадка металла на органеллах цитоскелета нейрона. Основой для выявления нейрофибрилл являются нейрофила-менты и нейротубулы, формирующие каркас нервной клетки. Нейрофибриллы видны как нежная сеть волокон в цитоплазме нервных клеток. Кроме того, в нейронах довольно часто можно видеть липидные включения (зерна липофусцина). Они характерны для старческого возраста и часто появляются при дистрофических процессах. Зерна липофусцина являются остаточными тельцами, возникающими в результате неполного переваривания. Их накопление может приводить к нарушению нормальных метаболических процессов в клетках и их гибели. В ряде нейронов в норме обнаруживаются пигментные включения (например с меланином), что обуславливает окрашивание нервных центров, содержащих подобные клетки (черная субстанция, голубоватое место, красное ядро).
Субмикроскопическое строение и некоторые цитофизиологи-ческие особенности тела нейрона. Несмотря на крайнее разнообразие морфологии нейронов, они имеют ряд общих черт строения. Ядра нейронов, особенно крупноклеточных, имеют округлую или овальную форму. Кариолемма часто формирует впячивания, что может значительно увеличивать площадь контакта поверхности ядра с цитоплазмой (нейроплазмой). Ядерная оболочка имеет большое количество ядерных пор, что указывает на активные процессы обмена, в том числе с РНК и субъединицами рибосом. Кариоплазма в крупных нейронах светлая. Но в мелких нервных клетках можно видеть и повышенную склонность к осаждению солей осмия (осмиофильность) и темное ядро. Данные особенности на светооптическом уровне проявляются в гипохромности или гиперхромности ядер (т. е. пониженной или повышенной склонности к окрашиванию ядерными красителями). Хорошо развит ядрышковый аппарат. В ядре обычно имеется 1-2 крупных умеренной плотности ядрышка, занимающих центральное положение. В мелких нервных клетках ядрышки мельче, их может быть до 3-6 и более. При реактивных проявлениях в клетке можно наблюдать смещение ядрышка к одному из краев ядра и его распад.
Матрикс цитоплазмы (нейроплазмы) гомогенный или мелкозернистый, слабой или умеренной электронной плотности. В нейроне сильно развита гранулярная ЭПС, представленная скоплениями или диффузно расположенными плоскими цистернами и трубочками. Как уже указывалось выше, гранулярная ЭПС преобладает в теле и может содержаться в начальных сегментах дендритов. За ней закреплено участие в процессах синтеза медиаторов и модуляторов, мембранных белков и т. д. Кроме связанных имеется и значительное число свободных полисом и рибосом (Питерс А., Полей С., Уебстер Г., 1972).
В нейронах хорошо развиты митохондрии. Они средних и больших размеров (диаметр 1-3 мкм), овальной или нитчатой формы, кристы имеют трабекулярное строение. Нейроны в энергетическом отношении крайне зависимы от аэробного окисления и во взрослом состоянии фактически неспособны к анаэробному гликолизу. В то же время тела нейронов имеют весьма высокую энергетическую активность. Эта активность многократно превышает таковую в зонах прилежащего ней-ропиля, и особенно белого вещества. В сером веществе нередко высокой активностью энергопотребления характеризуются участки скоплений синапсов. В то же время распределение кислорода и глюкозы с учетом возможностей транспорта из кровеносных сосудов и уровня потребления таково, что их запасы истощаются за секунды после прекращения кровотока (Васильев Ю.Г., Чучков В.М., 2003). В связи с этим нервные клетки находятся в выраженной зависимости от поступления кислорода и глюкозы и при нарушении кровотока практически сразу прекращают свою жизнедеятельность. Момент прекращения кровотока в головном мозге означает начало клинической смерти. Практически сразу же начинаются процессы саморазрушения в нейронах и прекращается их специфическая функциональная активность. Их мембраны деполяризуются. Митохондрии, ЭПС, ядерные оболочки набухают, а затем разрушаются. Начинаются процессы аутолиза и пе-рекисного окисления. При мгновенной смерти при комнатной температуре и нормальной температуре тела процессы саморазрушения в нейронах обратимы в течение 5-7 минут. Это и является сроком так называемой клинической смерти, когда возможно оживление организма. Необратимые изменения в нейронах жизненно важных центров, например дыхательного и сосудодвигательного, приводят к переходу клинической смерти в биологическую.
В нейронах значительного развития достигает комплекс Гольджи. Он может располагаться компактно или быть рассеян в цитоплазме тела нейрона. Специфическими органеллами нейрона являются нейро-филаменты и нейротубулы.
Нейрофиламенты представляют собой промежуточные филаменты диаметром 8-10 нм, образованные фибриллярными белками (белками так называемого нейрофибриллярного триплета, или нейрофибрилляр-ными кислыми белками). Основными функциями данной органеллы являются опорно-каркасная, обеспечение стабильной формы нейрона и нервной системы в целом. Аналогичную роль играют тонкие микрофи-ламенты (поперечный диаметр 6-8 нм), содержащие белки актины. В отличие от подобных микрофиламентов в других тканях и клетках, они не соединяются с микромиозинами, что делает невозможным активные сократительные функции в зрелых нервных клетках.
Нейротубулы по основным принципам своего строения практически не отличаются от микротрубочек. Они, как и все микротрубочки, имеют поперечный диаметр около 24 нм и на поперечном разрезе сформированы 13 молекулами глобулярных белков тубулинов. Как и везде, они поляризованы. В отличие от большинства микротрубочек в других клетках, нейротубулы весьма стабильны. Тубулин в них находится в метилированной форме и нередко кэпирован (концы нейроту-бул прикрыты белковыми молекулами, функция которых заключается в стабилизации нейротубул и предохранении их от разрушения). В нервной ткани они выполняют очень важную, если не сказать, уникальную роль. Они несут опорно-каркасную функцию, обеспечивают процессы циклоза, направляя органеллы и включения. Полярность ор-ганеллы, в которой имеется отрицательно и положительно заряженный конец, позволяет контролировать диффузионно-транспортные потоки в аксоне (так называемый быстрый и медленный аксоток). Кроме того, значительное число нейрофизиологов приписывает микротрубочкам роль хранилища поступающей в мозг информации.
В цитоплазме тел нейронов часто встречаются лизосомы. Они участвуют в пластических процессах, осуществляя катаболизм (разрушение) старых органелл и структур. В результате переваривания образуются остаточные тельца, включая липофусцин. Избыточное накопление липофусцина может приводить к дистрофическим процессам в нейроне, к нарушению его специфической активности и даже гибели. Такие явления характерны для старческих изменений и при различных патологических воздействиях. В теле нейронов можно видеть также транспортные пузырьки, часть которых содержит медиаторы (нейромедиаторы) и модуляторы, окруженные мембраной. Их размеры и строение зависят от содержания того или иного вещества. Достигнув окончания аксона, медиаторы накапливаются в синаптических пузырьках. Обычно зрелый нейрон синтезирует и выделяет лишь один медиатор, в соответствии с этим он имеет название. Например, серо-тонинергический нейрон образует и выделяет серотонин, дофаминер-гический - дофамин, холинергический - ацетилхолин и т. д.
Дендриты при световой микроскопии видны как короткие, зачастую сильно ветвящиеся отростки нейрона. Их ветвления более выражены в терминальных областях. Распространение дендритного дерева может быть ограничено областью нервного центра, в котором располагается нейрон, или прилежащими зонами. Дендриты в своих начальных сегментах содержат органеллы, характерные для тела нейрона, и фактически являются его продолжением. В частности, можно видеть цистерны гранулярной ЭПС, в результате чего на световом уровне в них видна хроматофильная субстанция. Хорошо развит цитоскелет, поддерживающий форму отростков.
Аксон, или нейрит, чаще всего длинный, слабо ветвится или не ветвится. Уже в начальном сегменте аксона, в отличие от дендрита, в нем отсутствует гранулярная ЭПС. Микротрубочки и микрофиламен-ты располагаются упорядоченно и на поперечных срезах нередко принимают форму решетки. В цитоплазме аксона видны митохондрии, транспортные пузырьки. Аксоны в основном миелинизированы (в ЦНС - олигодендроцитами, в периферической нервной системе - лем-моцитами). Начальный сегмент аксона расширен и имеет название аксонного холмика. Именно в зоне аксонного холмика происходит временная и пространственная суммация поступающих в нервную клетку сигналов, и если возбуждающие сигналы достаточно интенсивны, то в аксоне формируется потенциал действия и волна деполяризации (нервный импульс) направляется вдоль аксона, передаваясь на другие клетки.
Дата добавления: 2015-01-26; просмотров: 1367;