Морфофункциональная организация коры больших полушарий 1 страница
В этой книге сознательно рассматриваются лишь вопросы работы над голосом, которая в идеале должна органически претвориться в актерской игре, в произнесении текста на сцене или в обычном общении. Если техника, направленная на освобождение голоса, полностью освоена, человек становится свободнее, человек и голос сливаются воедино. Во многих случаях это соединение происходит естественно.
Существуют способы, с помощью которых актер может сознательно перейти от чисто голосовых упражнений к игре благодаря особой работе с текстом. Остановлюсь лишь на основных принципах работы с голосом, рассмотренных в этой книге, применительно к тексту.
Так как всякий произносимый текст через каждого человека раскрывается по-разному, то педагогу нет смысла показывать, как данный текст должен быть произнесен. Однако очень важно, чтобы каждая деталь текста была абсолютно понятна говорящему. Быть может, я немного преувеличиваю, но из своего опыта знаю, что половина актеров, играющих, скажем, Шекспира, понимают из того, что произносят, менее 20%, а на 80% — лишь интонируют. Я против того, чтобы упражнять голос и дыхание на тексте пьес. В один прекрасный день Вы должны будете сыграть героя, на репликах которого тренировали ухо, губы и язык. И вот тогда-то Вам будет чрезвычайно тяжело заставить Вашего героя не быть "экспертом" по дикции.
Однажды я работала с очень хорошей актрисой, которая играла Виолу в "Двенадцатой ночи". В драматической школе она потратила год, изучая "кольцевую" речь Виолы как упражнение для голосовой подвижности, фонетической четкости и точной ритмики речи. И хотя часть роли была сыграна ею хорошо, как только она доходила до "кольцевой" речи, игра ее становилась абсолютно безжизненной. Актриса показала мне, по какой книге занималась. Это был чисто научный подход, освещающий проблему точных голосовых переходов при коммуникации. Авторские замечания теоретически были безукоризненны, но для творческой практики актера неприемлемы. И потому у актрисы, работавшей над ролью Виолы, звуки были настолько отработаны и правильны. что техническая сторона перекрывала творческую.
Анализируя поэтический текст или возвышенную прозу, актер должен знать о метрическом размере стиха, ритме, рифме, игре слов, гиперболизации, о коротких и длинных звуках, звонких и глухих согласных, о скорости, объеме, высоте голоса и т.д. Но все это должно быть лишь средством в достижении одной цели — углубить, расширить понимание текста, а не определить его произнесение.
Я не сторонница учебников, где используется высокая поэзия в виде упражнений для развития брюшных мускул, увеличения грудной клетки или тренировки артикуляционной "акробатики". Во-первых, для меня это святотатство. Во-вторых, если Вы будете заняты вдохами и выдохами в соответствии с пометками на стихотворении, сам текст останется у Вас без внимания. В-третьих, если Ваш интеллектуальный, эмоциональный, дыхательный аппарат объединен и сосредоточен на центре, Ваше дыхание будет согласовываться только с эмоциональной линией, а изменение мысли и дыхания будут происходить спонтанно.
Теперь рассмотрим несколько практических советов в работе над текстом.
Текст — это напечатанное слово, а напечатанное слово, в первую очередь, воздействует на органы зрения. Для актера необходимо сознательное толкование увиденного слова — умом и сердцем. Произносимое слово — подвижно, звонко и может свободно передвигаться на звуковых волнах, активно воздействуя на разные части тела. Печатное слово статично, "сковано" во времени и пространстве буквами алфавита.
Еще раз заметим, что печатному слову в наше время отдается большее почтение, чем произносимому. Вот типичная фраза, свидетельствующая о том, что сила устного слова заметно убывает: "Я охотнее читаю Шекспира, чем слушаю его произведения". То есть мы потеряли способность воплощать слова Шекспира, давать им жизнь в звуке и движении.
Итак, наша практическая задача — трансформировать печатный текст в звуковой. Эта книга иллюстрирует взаимоотношение между эмоциями, инстинктивными импульсами, обдуманной реакцией, физическим и голосовым действием. Задача интеллекта — подключить импульсы, эмоции, чувства и звуки к мозговому центру, обеспечивая им равные права в процессе речи. На первой ступени работа с текстом должна быть медитативной.
Чтобы подойти к этой первой стадии в работе над текстом, повторите упражнения на релаксацию, описанные раньше. Затем, лежа на полу и держа текст перед собой, исследуйте в каждом предложении, фразе и слове все образы и идеи. Последовательность Ваших шагов может быть такова.
1. Посмотрите на страницу и найдите фразу (не обязательно первую).
2. Закройте глаза.
3. Не произнося фразу, постарайтесь увидеть ее перед глазами, а затем послать ее в Ваш дыхательный центр.
4. Пусть слова "обрастут" видениями, возникающими перед Вашим мысленным взором.
5. Позвольте этим видениям вызвать в Вас эмоции и разные ассоциации.
6. Выдохните, освободив себя от эмоций.
7. Произнесите шепотом слова выбранной фразы, дав свободу возникшему внутри Вас чувству.
8. Позвольте словам и чувствам обрести Ваш голос.
Таким образом, не стремясь произносить текст по порядку, исследуйте всю фразу, не вникая в ее значение.
Постепенно в тексте Вам откроется более глубокий смысл, чем если бы Вы пришли к нему путем умственных усилий. Искушение состоит в том, что Вам захочется еще раз услышать, как произнесенная Вами фраза звучала на первой ступени работы с текстом, и повторить ее, вместо того, чтобы вновь воссоздать весь процесс мышления. Вот почему частое повторение сцены легко может привести Вашу игру к механической. Единственный способ предотвратить это при частом повторе сцены — не "подключать" голос на репетиции, чтобы еще раз убедиться в реальности мыслительного процесса и переживаний.
Опишу работу над "речью", что также относится и к работе с партнером на сцене.
1. Произнесите свой текст полностью.
2. Стоя осуществите процесс релаксации.
3. Шепотом произнесите первые несколько строк или весь отрывок. Дыхание должно быть свободным и легким, исходящим из центра. Проследите, чтобы Ваш голос не стал помехой осознанию смысла того, что Вы говорите.
4. Остановитесь. Снова расслабьтесь. Вернитесь к началу и шепотом произнесите весь абзац еще раз. При повторном произнесении текста позвольте возникнуть новым мыслям и чувствам. Почувствуйте, что теперь Вы можете действовать с большей свободой. Забота о голосе больше не тревожит Вас.
5. Остановитесь. Расслабьтесь. Пройдитесь, встряхнитесь всем телом. Произнесите шепотом тот же самый отрывок в третий раз. Вы должны забыть, как звучал Ваш голос в прошлый раз, и полностью углубиться во внутренние процессы, движущие Вашей речью.
6. После того, как Вы в третий раз шепотом произнесли все тот же отрывок, вернитесь к началу текста и произнесите его вслух еще раз. Не слушайте свой голос. Все Ваше внимание должно быть обращено на мысли и чувства, которые Вы освобождаете своим голосом.
7. Проработайте весь текст по частям в том же порядке. Не произносите шепотом длинные абзацы. Это приведет Вас к пассивности. Ваша задача — перестроить процесс произнесения текста. Вы трансформируете энергию, а не изгоняете ее. Все это время Вы должны чувствовать себя актером, а не просто исполнителем упражнения. Умственная и эмоциональная энергии должны компенсировать недостаток голосовой энергии, которая продолжит генерироваться при восстановлении голоса.
"Работать над текстом" означает дать возможность словам явиться, возникнуть. Позвольте тексту эмоционально наполнить Ваше воображение. На этом этапе процесс физического самоосознавания, новые открытия, связанные с освобождением голоса,— тот фундамент, на котором строятся речь, сцена, характер и вся роль.
Морфофункциональная организация коры больших полушарий
Полушария конечного мозга состоят из белого вещества, покрытого снаружи серым, или корой, толщина которой в различных отделах больших полушарий колеблется от 1,3 до 4,5 мм. Кора представляет собой филогенетически наиболее молодой и вместе с тем сложный отдел мозга, предназначенный для обработки сенсорной информации, формирования двигательных команд и интеграции сложных форм поведения. Бурный рост неокортекса у высших позвоночных в ограниченном объеме черепа сопровождается образованием многочисленных складок, увеличивающих общую площадь коры, которая у человека составляет 2200 см2.
На этом пространстве сконцентрировано 109-1010 нейронов и еще большее количество глиальных клеток, выполняющих ионо-регулирующую и трофическую функции. Образующие кору нейроны по своей геометрии и функции подразделяются на несколько групп. Одну группу составляют варьирующие по размеру пирамидные клетки. Они ориентированы вертикально по отношению к поверхности коры и имеют тело треугольной формы . От тела пирамидной клетки вверх отходит длинный Т-образно ветвящийся апикальный дендрит, а вниз от основания нейрона - аксон, который либо покидает кору в составе нисходящих путей, либо направляется к другим зонам коры. Апикальные и более короткие базальные дендриты пирамидных клеток густо усеяны мелкими (до 3 мкм) выростами - шипиками, каждый из которых представляет собой область синаптического контакта.
Другая группа корковых нейронов представлена более мелкими звездчатыми клетками. Эти клетки имеют короткие сильно ветвящиеся дендриты и аксоны, формирующие внутрикорковые связи. Дендриты звездчатых клеток также могут быть снабжены шипиками, которые в процессе онтогенетического развития у человека появляются только к моменту рождения.
Наконец, третья группа корковых нейронов включает в себя веретеновидные клетки, имеющие длинный аксон, который ориентирован в горизонтальном или вертикальном направлении. В связи с тем ,что тела и отростки описанных выше нейронов имеют упорядоченное расположение, кора построена по экранному принципу и у млекопитающих в типичном случае состоит из шести горизонтальных слоев.
Самый наружный молекулярный слой слагается из густого сплетения нервных волокон, лежащих параллельно поверхности корковых извилин. Основную массу этих волокон составляют ветвящиеся апикальные дендриты пирамидных клеток нижележащих слоев. Сюда же в наружный слой приходят афферентные таламокортикальные волокна от неспецифических ядер таламуса, регулирующих уровень возбудимости корковых нейронов.
Второй слой - наружный зернистый - состоит из большого количества мелких звездчатых клеток, которые в вентральной части слоя дополняются малыми пирамидными клетками.
Третий слой - наружный пирамидный - формируется из пирамидных клеток средней величины. Функционально второй и третий слои коры объедиияют нейроны, отростки которых обеспечивают кортико-кортикаль.ные ассоциативные связи.
Четвертый слой - внутренний зернистый - содержит множество звездчатых юлеток (клеток-зерен), обусловливающих его гранулярную структуру. В этом слое преимущественно оканчиваются афферентные таламокортикальные волокна, идущие от специфических (проекционных) ядер таламуса.
Пятый слой - внутренний пирамидный - образован крупными пирамидными клегками. Наиболее крупные пирамидные нейроны - гигантские клеткш Беца - встречаются в прецентральной извилине, занятой моторной зоной коры больших полушарий. Аксоны этих эфферентных корковых нейронов формируют кортикоспинальный (пирамидный) и к:ортикобульбарные тракты, участвующие в координации целенаправленных двигательных актов и позы.
И наконец, шестой слой - полиморфный, или слой веретеновидных клеток, переходящий непосредственно в белое вещество больших полушарий. Этот слой содержит тела нейронов, чьи отростки формируют "сортикоталамические пути.
Такой шестислойный план строения характерен для всего неокортекса. Однако выраженность отдельных слоев в различных областях коры не одинакова. Учитывая эту особенность, К. Бродман по гистологическим признакам, в частности по плотности расположения и форме нейронов, разделил всю кору на 50 цитоархитектонических полей (рис.15.1.). Позднее были разработаны функциональные принципы классификации различных зон коры. При этом оказалось, что зоны, выделенные на основании их функциональных и нейрохимических особенностей, в известной степени соответствуют цитоархитектоническому разделению коры на поля.
Так, например, при сравнении наиболее изученных сенсорных и моторных зон коры оказалось, что в первых наружный пирамидный слой (3) выражен слабо и доминируют зернистые слои (2, 4), где оканчиваются сенсорные афференты (гранулярная кора). И напротив, в моторных зонах коры зернистые слои развиты плохо (агранулярная кора), а пирамидные слои превалируют.
Таким образом, функциональная специализация накладывает определенный отпечаток на структуру сенсорных и моторных зон коры, и выделение этих областей по различным системам классификации не случайно.
ВОПРОС№11
Конечный мозг, telencephalon, представлен двумя полушариями, hemispheria cerebri. В состав каждого полушария входят: плащ, или мантия, pallium, обонятельный мозг, rhinencephalon, и базальные ядра. Остатком первоначальных полостей обоих пузырей конечного мозга являются боковые желудочки, ventriculi laterales.
Передний мозг, из которого выделяется конечный, вначале возникает в связи с обонятельным рецептором (обонятельный мозг), а затем он становится органом управления поведением животного, причем в нем возникают центры инстинктивного поведения, основанного на видовых реакциях (безусловные рефлексы), - подкорковые ядра и центры индивидуального поведения, основанного на индивидуальном опыте (условные рефлексы), - кора большого мозга. Соответственно этому в конечном мозге различают в порядке исторического развития следующие группы центров:
Обонятельный мозг, rhinencephalon, - самая древняя и вместе с тем самая меньшая часть, расположенная вентрально.
Базальные, или центральные, ядра полушарий, «подкорка», - старая часть конечного мозга, paleencephalon, скрытая в глубине.
Серое вещество коры, cortex, - самая молодая часть, neencephalon, и вместе с тем самая большая часть, покрывающая остальные как бы плащом, откуда и ее название «плащ», или мантия, pallium.
Кроме отмеченных для животных двух форм поведения, у человека возникает третья форма - коллективное поведение, основанное на опыте человеческого коллектива, создающегося в процессе трудовой деятельности человека и общения людей с помощью речи. Эта форма поведения связана с развитием самых молодых поверхностных слоев мозговой коры, составляющих материальный субстрат так называемой второй сигнальной (словесной) системы действительности (И. П. Павлов). Так как в процессе эволюции из всех отделов центральной нервной системы быстрее и сильнее всего растет конечный мозг, то он у человека становится самой большой частью головного мозга и приобретает вид двух объемистых полушарий - правого и левого, hemispheria dextrum et sinistrum.
В глубине продольной щели мозга оба полушария соединены между собой толстой горизонтальной пластинкой - мозолистым телом, corpus callosum, которое состоит из нервных волокон, идущих поперечно из одного полушария в другое. В мозолистом теле различают передний загибающийся книзу конец, или колено, genu corporis callosi, среднюю часть, тело, truncus corporis callosi, и затем задний конец, утолщенный в форме валика, splenium corporis callosi. Все эти части хорошо видны на сагиттальном разрезе мозга между обоими полушариями. Колено мозолистого тела, загибаясь книзу, заостряется и образует клюв, rostrum corporis callosi, который переходит в тонкую пластинку, lamina rostralis, продолжающуюся в свою очередь в lamina terminalis.
Под мозолистым телом находится так называемый свод, fornix, представляющий два дугообразных белых тяжа, которые в средней своей части, corpus fornicis, соединены между собой, а спереди и сзади расходятся, образуя впереди столбы свода, columnae fornicis, позади - ножки свода, crura fornicis. Crura fornicis, направляясь назад, спускаются в нижние рога боковых желудочков и переходят там в fimbria hippocampi. Между crura fornicis под splenium corporis callosi протягиваются поперечные пучки нервных волокон, образующие commissura fornicis. Передние концы свода, columnae fornicis, продолжаются вниз до основания мозга, где оканчиваются в corpora mamillaria, проходя через серое вещество hypothalamus. Columnae fornicis ограничивают лежащие позади них межжелудочковые отверстия, соединяющие III желудочек с боковыми желудочками.
Впереди столбов свода находится передняя спайка, commissura anterior, имеющая вид белой поперечной перекладины, состоящей из нервных волокон. Между передней частью свода и genu corporis callosi натянута тонкая вертикальная пластинка мозговой ткани - прозрачная перегородка, septum pellucidum, в толще которой находится небольшая щелевидная полость, cavum septi pellucidi.
ВОПРОС№12
Физиология желез внутренней секреции. Роль обратной связи в механизме регуляции в функционировании желез внутренней секреции
Регуляция внутренней секреции гипофиза: Внутренняя секреция гипофиза, регулирующего функции ряда других эндокринных желез, в свою очередь находится в зависимости от функционирования этих желез. Так, недостаток в крови андрогенов и эстрогенов, глюкокортикоидов и тиротоксина стимулирует продукцию соответственно гонадотропного, адренокортикотропного и тиротропного гормонов гипофиза. Наоборот, избыток гормонов половых желез, надпочечников и щитовидной железы угнетает продукцию соответствующих тропных гормонов гипофиза. Таким образом, гипофиз включен в систему нейрогуморальной регуляции, работающей по принципу обратной связи, автоматически поддерживающей продукцию гормонов соответствующих желез на необходимом уровне.
Большое значение в регуляции функций передней доли гипофиза имеют особенности ее кровоснабжения, а именно то, что кровь, оттекающая от капилляров гипоталамической области, поступает в так называемы портальные сосуды гипофиза и омывает его клетки. В гипоталамической области вокруг этих капилляров существует нервная сеть, состоящая из отростков нервных клеток, формирующих на капиллярах своеобразные нейрокапиллярные синапсы. Через эти образования продукты нейросекреции клеток гипоталамуса поступают в кровь и с ее током переносятся к передней доле гипофиза, изменяя их функции.
Механизм обратной связи, с помощью которого уровень гормонов надпочечника и половых желез в крови регулирует интенсивность выделения адренокортикотропного и гонадотропных гормонов гипофиза, осуществляется через ядра гипоталамической области. Действие гормонов половых желез непосредственно на клетки передней доли гипофиза не вызывает угнетения выработки гонадотропинов; в то же время действие гормонов этих желез на гипоталамическую область обуславливает указанный эффект. Последний наблюдается лишь в том случае. Когда не нарушены связи гипофиза с гипоталамусом; он исчезает, если эти связи нарушаются. В отличие о этого избыточное содержание тироксина в крови, например при его введении, не угнетает образование тиреотропинвысвобождающего фактора клетками гипоталамуса, но блокирует действие этого вещества на аденогипофиз, вследствие чего уменьшается выделение тиротропина.
Нейронами гипоталамуса, продуцирующим гормоны, присущи функции одновременно секреторных и нервных клеток. Это находит свое выражение в том, что в процессе секреции гормонов нервными клетками в них возникают потенциалы действия, аналогичные наблюдавшимся при возникновении и распространении процесса возбуждения. Генерированием подобных потенциалов действия секреция железистых клеток никогда не сопровождается. железа внутренний секреция гормон
Нейросекреторная клетка способна осуществлять регулирующее влияние не только посылая другим нейронам обычные импульсы, но и выделяя специфические вещества – нейрогормоны. Процессы нервной и гуморальной регуляции здесь объединяются в одной клетке.
При поступлении к передней доле гипофиза продуктов нейросекреции гипоталамуса гипофиз усиливает выделение ряда гормонов. В гипоталамусе образуются и поступают к аденогипофизу вещества, получившие название высвобождающих факторов: кортикотропинвысвобождающий, тиреотропинвысвобождающий, фолликулостимулинвысвгобождающий, лютеинвысвобождающий, соматропинвысвобождающий. Они способствуют образованию и выделению АКТГ, гонадотропинов, тиротропина, соматотропина.
Регуляция секреции щитовидной железы: в железе синтезируются йодированные соединения: монойодтирозин и дийодтирозин. Они образуются в клетках фолликулов железы комплексное соединение с белком – тироглобулин, который может сохраняться в фолликулах в течении нескольких месяцев. При его гидролизе протеазой, вырабатываемой клетками железы, высвобождаются активные гормоны – трийодтиронин и тетрайодтиронин или тироксин. Трийодтиронин и тироксин переходят в кровь, где связываются с белками плазмы крови тироксинсвязывающим глобулином(ТСГ), тироксинсвязывающим преальбумином(ТСПА) и альбумином, являющимися переносчиками гормонов. В тканях эти комплексы расщепляются, высвобождая тироксин и трийодтиронин.
Тироксин, трийодтиронин и тирйодтироуксусная кислота резко усиливают окислительные процессы в митохондриях, что ведет к усилению энергетического обмена клетки.
Регуляция секреции околощитовидных желез: паратгормон активирует функцию остекластов, разрушающих костную ткань. Усиливает всасывание кальция в кишечнике и процессы его реабсорбции в канальцах почки.
Регуляция внутренней секреции поджелудочной железы: образование инсулина регулируется уровнем глюкозы в крови. Увеличение содержания глюкозы в крови после приема ее больших количеств, а так же при гипергликемии, связанной с напряженной физической работой и эмоциями, повышает секрецию инсулина. Наоборот, понижение уровня глюкозы в крови тормозит секрецию инсулина, но повышает секрецию глюкагона. Глюкоза влияет на - и в – клетки поджелудочной железы непосредственно.
Инсулин разрушается ферментом инсулиназой, находящейся в печени и скелетных мышцах.
Уровень глюкозы в крови, помимо инсулина и глюкагона, регулируется соматотропным гормоном гипофиза, а также гормонами надпочечника.
Регуляция внутренней секреции надпочечников: эффекты, возникающие при действии адреналина, напоминают сдвиги, вызываемые возбуждением симпатической нервной системы. Эта система мобилизует энергетические ресурсы с тем, чтобы организм мог вынести большие напряжения и справиться с чрезвычайными обстоятельствами. В таких условиях всегда вначале возникает возбуждение симпатической нервной системы, которое среди прочих эффектов приводит к выбросу в кровь больших количеств адреналина. Адреналин гуморальным путем поддерживает сдвиги, вызванные возбуждение симпатической нервной системы, то есть длительно поддерживает перестройку функций, необходимую при чрезвычайных ситуациях.
Количество минералокортикойдов, выделяемых надпочечниками, находится в прямой зависимости от содержания натрия и калия в организме. Повышенное количество натрия в крови, перфузирующей изолированный надпочечник, тормозит секрецию альдостерона. Недостаток натрия в крови, наоборот, вызывает повышение секреции альдостерона. Ионы натрия регулируют интенсивность функции клеток клубочковой зоны надпочечников непосредственно. Ионы калия также действуют непосредственно на клетки клубочковой зоны надпочечников. Их влияние противоположно влиянию ионов натрия, а действие выражено слабее. АКТГ гипофиза, влияя на эту зону, также увеличивает секрецию альдостерона, но эффект этот выражен слабее нежели влияние АКТГ на выработку глюкокорткойдов.
Глюкокортикойды оказывают влияние на углеводный, белковый и жировой обмен. Повышают уровень сахара в крови вследствие стимуляции образования глюкозы в печени.
Регуляция внутренней секреции половых желез: деятельность половых желез регулируется нервной системой и гормонами гипофиза и эпифиза. Нервная регуляция половых желез осуществляется путем рефлекторного изменения внутренней секреции гипофиза. В регуляции деятельности половых желез решающее значение имеют гонадотропные гормоны или гонадотропины, образуемые передней долей гипофиза.
ОБЩЕЕ ПОНЯТИЕ О ГОРМОНАХ
Учение о гормонах выделено в самостоятельную науку – эндокринологию. Современная эндокринология изучает химическую структуру гормонов, образующихся в железах внутренней секреции, зависимость между структурой и функцией гормонов, молекулярные механизмы действия, а также физиологию и патологию эндокринной системы . Учреждены специализированные научно-исследовательские институты, лаборатории, издаются научные журналы; созываются международные конференции, симпозиумы и конгрессы, посвященные проблемам эндокринологии. В наши дни эндокринология превратилась в одну из самых бурно развивающихся разделов биологической науки. Она имеет свои цели и задачи, специфические методологические подходы и методы исследования. В нашей стране головным научным учреждением, объединяющим исследования по этим проблемам, является Эндокринологический научный центр РАМН.
Гормоны относятся к биологически активным веществам, определяющим в известной степени состояние физиологических функций целостного организма, макро- и микроструктуру органов и тканей и скорость протекания биохимических процессов. Таким образом, гормоны – вещества органической природы, вырабатывающиеся в специализированных клетках желез внутренней секреции, поступающие в кровь и оказывающие регулирующее влияние на обмен веществ и физиологические функции. В это определение необходимо внести соответствующие коррективы в связи с обнаружением типичных гормонов млекопитающих у одноклеточных (например, инсулин у микроорганизмов) или возможностью синтеза гормонов соматическими клетками в культуре ткани (например, лимфоцитами под действием факторов роста).
Одной из удивительных особенностей живых организмов является их способность сохранять постоянство внутренней среды – гомеостаз – при помощи механизмов саморегуляции, в которых одно из главных мест принадлежит гормонам. У высших животных координированное протекание всех биологических процессов не только в целостном организме, но и в микропространстве отдельной клетки и даже в отдельном субклеточном образовании (митохондрии, микросомы) определяется нейрогуморальными механизмами, сложившимися в процессе эволюции. При помощи этих механизмов организм воспринимает разнообразные сигналы об изменениях в окружающей и внутренней средах и тонко регулирует интенсивность процессов обмена. В регуляции этих процессов, в осуществлении последовательности протекания множества реакций гормоны занимают промежуточное звено между нервной системой и действием ферментов, которые непосредственно регулируют скорость обмена веществ. В настоящее время получены доказательства, что гормоны вызывают либо быструю (срочную) ответную реакцию, повышая активность предобразованных, имеющихся в тканях ферментов (это свойственно гормонам пептидной и белковой природы), либо, что более характерно, например, для стероидных гормонов, медленную реакцию, связанную с синтезом ферментов de novo. Как будет показано далее, стероидные гормоны оказывают влияние на генетический аппарат клетки, вызывая синтез соответствующей мРНК, которая, поступив в рибосому, служит матрицей для синтеза молекулы белка – фермента. Предполагают, что и другие гормоны (имеющие белковую природу) опосредованно через фосфорилирование негистоновых белков могут оказывать влияние на гены, контролируя тем самым скорость синтеза соответствующих ферментов. Таким образом, любые нарушения синтеза или распада гормонов, вызванные разнообразными причинными факторами, включая заболевания эндокринных желез (состояние гипо- или гиперфункции) или изменения структуры и функций рецепторов и внутриклеточных посредников, приводят к изменению нормального синтеза ферментов и соответственно к нарушению метаболизма.
Зарождение науки об эндокринных железах и гормонах относится к 1855 г., когда Т. Аддисон впервые описал бронзовую болезнь, связанную с поражением надпочечников и сопровождающуюся специфической пигментацией кожных покровов. Клод Бернар ввел понятие о железах внутренней секреции, т.е. органах, выделяющих секрет непосредственно в кровь. Позже Ш. Броун-Секар показал, что недостаточность функции желез внутренней секреции вызывает развитие болезней, а экстракты, полученные из этих желез, оказывают хороший лечебный эффект. В настоящее время имеются бесспорные доказательства, что почти все болезни желез внутренней секреции (тиреотоксикоз, сахарный диабет и др.) развиваются в результате нарушения молекулярных механизмов регуляции процессов обмена, вызванных недостаточным или, наоборот, избыточным синтезом соответствующих гормонов в организме человека.
Термин «гормон» (от греч. hormao – побуждаю) был введен в 1905 г. У. Бейлиссом и Э. Старлингом при изучении открытого ими в 1902 г. гормона секретина, вырабатывающегося в двенадцатиперстной кишке и стимулирующего выработку сока поджелудочной железы и отделение желчи. К настоящему времени открыто более сотни различных веществ, наделенных гормональной активностью, синтезирующихся в железах внутренней секреции и регулирующих процессы обмена веществ. Установлены специфические особенности биологического действия гормонов: а) гормоны проявляют свое биологическое действие в ничтожно малых концентрациях (от 10–6 до 10–12 М); б) гормональный эффект реализуется через белковые рецепторы и внутриклеточные вторичные посредники (мессендже-ры); в) не являясь ни ферментами, ни коферментами, гормоны в то же время осуществляют свое действие путем увеличения скорости синтеза ферментов de novo или изменения скорости ферментативного катализа; г) действие гормонов в целостном организме определяется в известной степени контролирующим влиянием ЦНС; д) железы внутренней секреции и продуцируемые ими гормоны составляют единую систему, тесно связанную при помощи механизмов прямой и обратной связей.
Дата добавления: 2015-01-26; просмотров: 1470;