Линейные неоднородные уравнения.
Ранее было показано (см. лекцию 19), что сумма решений линейного неоднородного уравнения L[y] = f(x) и соответствующего однородного уравнения L[y] = 0 является решением неоднородного уравнения. Используя это свойство, можно доказать следующую теорему:
Теорема 21.1. Общее решение на отрезке [a,b] уравнения L[y] = f(x) с непрерывными на [a,b] коэффициентами pi(x) и правой частью f(x) равно сумме общего решения соответствующего однородного уравнения и какого-либо частного решения неоднородного уравнения.
Доказательство.
Требуется доказать, что для любых начальных условий , можно подобрать такие значения постоянных ci, чтобы функция
, (21.5)
где yi – линейно независимые частные решения однородного уравнения L[y] = 0, а - частное решение рассматриваемого неоднородного уравнения, была решением этого неоднородного уравнения с заданными начальными условиями. Это требование приводит нас к системе уравнений относительно неизвестных с1, с2,…, сп:
, (21.6)
главным определителем которой является определитель Вронского , как известно, не равный нулю. Поэтому система (21.6) имеет единственное решение, что и доказывает утверждение теоремы.
Замечание. Таким образом, при найденном общем решении однородного уравнения решение неоднородного уравнения сводится к подбору его частного решения.
Лекция 22.
Методы нахождения частного решения неоднородного линейного дифференциального уравнения (метод вариации произвольных постоянных, метод неопределенных коэффициентов и принцип суперпозиции).
Распространим метод вариации произвольных постоянных, рассмотренный в лекции 19 для решения линейного уравнения первого порядка, на линейные уравнения высших порядков. Будем искать решение неоднородного уравнения в виде . При этом требуется найти п неизвестных функций с1(х), с2(х),…, сп(х), которые удовлетворяли бы только одному уравнению
. (22.1)
Поэтому можно дополнительно потребовать, чтобы искомые функции удовлетворяли еще каким-нибудь п-1 уравнениям, выбранным так, чтобы производные функции имели по возможности такой же вид, как при постоянных ci. Первая производная решения имеет вид: . Потребуем, чтобы вторая сумма в этом выражении равнялась нулю: , тогда . Зададим такое же условие для второй производной:
, , . Продолжая вычислять производные функции до порядка п – 1 включительно и требуя каждый раз, чтобы , получим:
(22.2)
( в последнем равенстве уже нельзя потребовать, чтобы вторая сумма равнялась нулю, так как на искомые функции уже наложено п – 1 условие, а последним требованием является то, что эти функции должны удовлетворять уравнению (22.1)). Подставив с учетом (22.2) в (22.1), получим:
,
но yi – частные решения однородного уравнения, следовательно, все слагаемые второй суммы равны нулю и уравнение сводится к следующему: . (22.3)
Добавив его к первым п – 1 уравнениям системы (22.2), получим систему из п уравнений для определения с1΄, с2΄,…, сп΄, определитель которой является определителем Вронского для функций у1, у2,…, уп и, следовательно, не равен нулю. Следовательно, из этой системы можно единственным образом найти производные искомых функций, а затем с помощью интегрирования и сами функции с1, с2,…, сп.
Пример.
. Найдем решение однородного уравнения, для чего составим характеристическое уравнение k² - 2k + 1 = 0, k1 = k2 =1. Следовательно, общее решение однородного уравнения имеет вид у = (с1 + c 2 x)ех, то есть фундаментальную систему решений составляют функции у1 = ех и у2 = хех. Будем искать общее решение неоднородного уравнения в виде у = с1(х)ех + с2(х)хех. Составим систему (22.2):
, откуда ,
, где С1 и С2 – произвольные постоянные. Таким образом, найдено общее решение исходного уравнения: у = ех(хln|x| - x + C1x + C2).
Дата добавления: 2015-03-19; просмотров: 716;