Коэффициентами.
Для некоторых видов правой части линейного неоднородного дифференциального уравнения
(22.4)
можно подобрать частное решение в виде функции с неопределенными коэффициентами, которые определяются путем подстановки этой функции в уравнение (22.4).
1. f(x) = A0 xs +A1 xs-1 +…+ As (ап ≠ 0). При этом существует частное решение уравнения (22.4), имеющее такой же вид: y = B0 xs + B1 xs-1 +…+ Bs. Действительно, подставив эту функцию в уравнение (22.4) и приравняв коэффициенты при одинаковых степенях х, получим разрешимую единственным образом систему линейных уравнений: . Пример. . Будем искать частное решение в виде у = Ах + В, тогда , и после подстановки в уравнение получим: 3А + 2Ах + 2В = 3х – 5. Тогда 2А = 3, 3А + 2В = = -5. Следовательно, , и общее решение уравнения можно записать в виде: .
2. Если (то есть k = 0 является α – кратным корнем характеристического уравнения), то частное решение имеет вид: . Легко убедиться, что функция подобного вида является решением уравнения (22.4) при поставленных условиях. Пример. . Пусть Подставляя в уравнение, получим: откуда –36А = 2, 24А – 18В = 0, 6В – 6С = 5. Решая эту систему, получаем Следовательно, общее решение уравнения имеет вид: .
3. . Если число р при этом не является корнем характеристического уравнения, можно задать частное решение в виде: . Если же р – корень характеристического уравнения кратности α, частное решение имеет вид: . В обоих случаях с помощью подстановки в исходное уравнение можно убедиться, что выбранные функции являются его решениями. Пример 1. . Найдя корни характеристического уравнения k² + k – 2 = 0: k1 = 1, k2 = -2, видим, что р = -1 не является корнем этого уравнения. Поэтому будем искать частное решение в форме y = e-x(Ax + B). При этом . Подставляя в уравнение, получаем: , откуда –2А = 1, -А – 2В = 0, то есть . Итак, общее решение уравнения: . Пример 2. . Здесь р = 1 – корень характеристического уравнения кратности 2, поэтому частное решение имеет вид . Подстановка в уравнение дает 2Аех = 2ех, откуда А =1, а общее решение: у = (с1 + с2х + х²)ех.
4. В аналогичной форме задаются частные решения в случае, когда правая часть уравнения (22.1) имеет вид , где Р и Q – некоторые многочлены: а) если p ± qi - не корни характеристического уравнения, то можно подобрать частное решение в виде , где и - многочлены с неопределенными коэффициентами, степень т которых есть старшая из степеней многочленов Р и Q.
б) если p ± qi - корни характеристического уравнения кратности α, то
.
Пример.
. При этом ± - корни характеристического уравнения кратности 2, поэтому следует искать частное решение в виде: .
5. Если правая часть уравнения (22.1) представляет собой сумму функций, рассмотренных в предыдущих пунктах, то по принципу суперпозиции частное решение будет задаваться как сумма решений, соответствующих каждому из слагаемых правой части.
Пример.
Для уравнения частное решение ищем в виде:
.
Дата добавления: 2015-03-19; просмотров: 619;