Геометрические приложения определенного интеграла.
- Вычисление площадей плоских фигур.
Вспомним, каким образом вводилось понятие определенного интеграла. С геометрической точки зрения интегральная сумма представляет собой (при f(x) ≥ 0) сумму площадей прямоугольников с основанием и высотой . Переходя к пределу при |τ|→0, получаем, что при представляет собой площадь так называемой криволинейной трапеции aА1В1b, то есть фигуры, ограниченной частью графика функции
у
у
y=f(x) y=f2(x)
A1 B1
y=f1(x)
a b х a b x
Рис. 1 Рис. 2
f(x) от х = а до x = b и отрезками прямых х = а, x = b и у = 0 (рис. 1):
. (13.3)
Если требуется найти площадь фигуры, ограниченной графиками двух функций: f1(x) и f2(x) (рис. 2), то ее можно рассматривать как разность площадей двух криволинейных трапеций: верхней границей первой из них служит график функции f2(x), а второй – f1(x). Таким образом, . (13.4)
Замечание 1. Формула (13.4) справедлива, если графики функций f1(x) и f2(x) не пересекаются при a < x < b.
Замечание 2. Функции f1(x) и f2(x) могут при этом принимать на интервале [a,b] значения любого знака.
Пример.
Найти площадь фигуры, ограниченной графиками функций y = x² - 3x – 5 и y = x – 5.
Найдем абсциссы точек пересечения указанных графиков, то есть корни уравнения x² - 3x – 5 = x – 5. x² - 4x = 0, x1 = a = 0, x2 = b = 4. Таким образом, найдены пределы интегрирования. Так как на интервале [0,4] прямая y = x – 5 проходит выше параболы у = x² - 3x – 5, формула (13.4) примет вид:
Лекция 14.
Дата добавления: 2015-03-19; просмотров: 1236;