Функция распределения вероятностей случайной величины и ее свойства.
Рассмотрим функцию F(х), определенную на всей числовой оси следующим образом: для каждого х значение F(х) равно вероятности того, что дискретная случайная величина примет значение, меньшее х, т. е.
(18) |
Эта функция называется функцией распределения вероятностей, или кратко, функцией распределения.
Пример 1. Найти функцию распределения случайной величины , приведенной в примере 1, п. 1.
Решение: Ясно, что если , то F(x)=0, так как не принимает значений, меньших единицы. Если , то ; если , то . Но событие <3 в данном случае является суммой двух несовместных событий: =1 и =2. Следовательно,
Итак для имеем F(x)=1/3. Аналогично вычисляются значения функции в промежудках , и . Наконец, если x>6 то F(x)=1, так как в этом случае любое возможное значение (1, 2, 3, 4, 5, 6) меньше, чем x. График функции F(x) изображен на рис. 4.
Пример 2. Найти функцию распределения случайной величины , приведенной в примере 2, п. 1.
Решение: Очевидно, что
График F(x) изображен на рис. 5.
Зная функцию распределения F(x), легко найти вероятность того, что случайная величина удовлетворяет неравенствам .
Рассмотрим событие, заключающееся в том, что случайняя величина примет значение, меньшее . Это событие распадается на сумму двух несовместных событий: 1) случайная величина принимает значения, меньшие , т.е. ; 2) случайная величина принимает значения, удовлетворяющие неравенствам . Используя аксиому сложения, получаем
Отсюда
Но по определению функции распределения F(x) [см. формулу (18)], имеем , ; cледовательно,
(19) |
Таким образом, вероятность попадания дискретной случайной величины в интервал равна приращению функции распределения на этом интервале.
Рассмотрим основные свойства функции распределения.
1°. Функция распределения является неубывающей.
В самом деле, пусть < . Так как вероятность любого события неотрицательна, то . Поэтому из формулы (19) следует, что , т.е. .
2°. Значения функции распределения удовлетворяют неравенствам .
Это свойство вытекает из того, что F(x) определяется как вероятность [см. формулу (18)]. Ясно, что * и .
3°. Вероятность того, что дискретная случайная величина примет одно из возможных значений xi, равна скачку функции распределения в точке xi.
Действительно, пусть xi - значение, принимаемое дискретной случайной величиной, и . Полагая в формуле (19) , , получим
(20) |
В пределе при вместо вероятности попадания случайной величины на интервал получим вероятность того, что величина примет данное значение xi:
C другой стороны, получаем , т.е. предел функции F(x) справа, так как . Следовательно, в пределе формула (20) примет вид
(21) |
т.е. значение p(xi) равно скачку функции ** xi. Это свойство наглядно иллюстрируется на рис. 4 и рис. 5.
* Здесь и в дальнейшем введены обозначения: , .
** Можно показать, что F(xi)=F(xi-0), т.е. что функция F(x) непрерывна слева в точке xi.
3. Непрерывные случайные величины.
Кроме дискретных случайных величин, возможные значения которых образуют конечную или бесконечную последовательность чисел, не заполняющих сплошь никакого интервала, часто встречаются случайные величины, возможные значения которых образуют некоторый интервал. Примером такой случайной величины может служить отклонение от номинала некоторого размера детали при правильно налаженном технологическом процессе. Такого рода, случайные величины не могут быть заданы с помощью закона распределения вероятностей р(х). Однако их можно задать с помощью функции распределения вероятностей F(х). Эта функция определяется точно так же, как и в случае дискретной случайной величины:
Таким образом, и здесь функция F(х) определена на всей числовой оси, и ее значение в точке х равно вероятности того, что случайная величина примет значение, меньшее чем х.
Формула (19) и свойства 1° и 2° справедливы для функции распределения любой случайной величины. Доказательство проводится аналогично случаю дискретной величины.
Случайная величина называется непрерывной, если для нее существует неотрицательная кусочно-непрерывная функция* , удовлетворяющая для любых значений x равенству
(22) |
Функция называется плотностью распределения вероятностей, или кратко, плотностью распределения. Если x1<x2, то на основании формул (20) и (22) имеем
(23) |
Исходя из геометрического смысла интеграла как площади, можно сказать, что вероятность выполнения неравенств равна площади криволинейной трапеции с основанием [x1,x2], ограниченной сверху кривой (рис. 6).
Так как , а на основании формулы (22)
, то
(24) |
Пользуясь формулой (22), найдем как производную интеграла по переменной верхней границе, считая плотность распределения непрерывной**:
(25) |
Заметим, что для непрерывной случайной величины функция распределения F(х) непрерывна в любой точке х, где функция непрерывна. Это следует из того, что F(х) в этих точках дифференцируема.
На основании формулы (23), полагая x1=x, , имеем
В силу непрерывности функции F(х) получим, что
Следовательно
Таким образом, вероятность того, что непрерывная случайная величина может принять любое отдельное значение х, равна нулю.
Отсюда следует, что события, заключающиеся в выполнении каждого из неравенств
, , ,
Имеют одинаковую вероятность, т.е.
В самом деле, например,
так как
Замечание. Как мы знаем, если событие невозможно, то вероятность его наступления равна нулю. При классическом определении вероятности, когда число исходов испытания конечно, имеет место и обратное предложение: если вероятность события равна нулю, то событие невозможно, так как в этом случае ему не благоприятствует ни один из исходов испытания. В случае непрерывной случайной величины число возможных ее значений бесконечно. Вероятность того, что эта величина примет какое-либо конкретное значение x1 как мы видели, равна нулю. Однако отсюда не следует, что это событие невозможно, так как в результате испытания случайная величина может, в частности, принять значение x1. Поэтому в случае непрерывной случайной величины имеет смысл говорить о вероятности попадания случайной величины в интервал, а не о вероятности того, что она примет какое-то конкретное значение.
Так, например, при изготовлении валика нас не интересует вероятность того, что его диаметр будет равен номиналу. Для нас важна вероятность того, что диаметр валика не выходит из поля допуска.
Пример. Плотность распределения непрерывной случайной величины задана следующим образом:
График функции представлен па рис. 7. Определить вероятность того, что случайная величина примет значение, удовлетворяющее неравенствам .Найти функцию распределения заданной случайной величины.
Решение:
Используя формулу (23), имеем
По формуле (22) находим функцию распределения F(x) для заданной случайной величины.
Если , то
Если , то
Если x>4, то
Итак,
График функции F(x) изображен на рис. 8.
Следующие два пункта посвящены часто встречающимся на практике распределениям непрерывных случайных величин — равномерному и нормальному распределениям.
* Функция называется кусочно-непрерывной на всей числовой оси, если она на любом сегменте или непрерывна, или имеет конечное число точек разрыва I рода.
** Правило дифференцирования интеграла с переменной верхней границей, выведенное в случае конечной нижней границы, остается справедливым и для интегралов с бесконечной нижней границей. В самом деле,
Так как интеграл
есть величина постоянная.
Дата добавления: 2014-11-29; просмотров: 3015;