Мультиколлинеарность и отбор значимых факторов
Мультиколлинеарностью называют высокую взаимную коррелированность объясняющих переменных. Покажем, какие неприятности алгебраического характера это влечет за собой.
Для определения вектора коэффициентов регрессии b используется выражение (3.7): b=(X’X)-1X’Y, в котором присутствует обратная матрица для X’X.
Пример 4.1.
Дана квадратная матрица А размером 2х2:
.
Найти обратную ей матрицу А-1.
Решение.
Формула обращения матрицы:
(4.1) |
где çA ç = 8×2,9 - 6×4 = 23,2 - 24 = - 0,8 - определитель матрицы А;
(Aij) - матрица, составленная из алгебраических дополнений матрицы А:
;
.
Окончательно
.
Проверим правильность обращения матрицы А. Должно выполняться равенство: АА-1 = Е, где Е - единичная матрица:
.
В результате проверки получена единичная матрица, что и требовалось показать.
Обратим внимание на то, что матрица А достаточно близка к особенной. Действительно, если бы элемент а22 равнялся не 2,9, а 3,0, то определитель çА ç = 0, деление на 0 невозможно, А-1 не существует. Обратим также внимание на то, что при а22 =3,0 столбцы линейно зависимы: второй столбец получается из первого делением на 2: А2=А1/2. Это случай функциональной зависимости. Нарушается предпосылка-6 множественной регрессии.
На практике чаще бывают случаи, когда взаимосвязь между переменными Х1, Х2, ... , Хp носит статистический характер. При высокой взаимной коррелированности объясняющих переменных определитель квадратной матрицы X’X может очень близко приближаться к нулю. А поскольку вектор оценок b и его ковариационная матрица åb пропорциональны (X’X)-1X’Y, получаются большие средние квадратические отклонения коэффициентов b и оценка их по t-критерию Стьюдента не имеет смысла, хотя в целом по F-критерию модель может быть значимой.
При высокой мультиколлинеарности оценки становятся очень чувствительными к малым изменениям наблюденных данных, включая объем выборки. Уравнение регрессии содержательно не интерпретируется, так как некоторые его коэффициенты могут иметь неверные с точки зрения экономической теории (смысла) знаки и неоправданно большие значения.
Существуют различные подходы, в том числе и эвристические, к выявлению и снижению степени мультиколлинеарности.
Первый подход основан на анализе корреляционной матрицы между объясняющими переменными. Признак мультиколлинеарности здесь - наличие парных коэффициентов корреляции со значениями от ç0,7ç и выше. Трудно проследить цепочку взаимозависимости между переменными. Обычно это удается для числа переменных не более 4-х. Некоторые из тесно связанных между собой объясняющих переменных исключаются из списка претендентов, а вместо них могут включаться другие. И так несколько раз.
Второй подход - находить коэффициенты детерминации одной из объясняющих переменных в зависимости от групп других объясняющих переменных. Признак мультиколлинеарности здесь - наличие коэффициента детерминации со значением больше 0,6. Для снижения мультиколлинеарности такие группы переменных исключаются. Вместо них в соответствии с гипотезой о данном явлении вводятся другие переменные. Процедура может повторяться.
Третий подход - исследование матрицы X’X. Если ее определитель близок по модулю к нулю (это еще зависит и от единиц измерения), например, çX’Xç = 0,000013, то это может свидетельствовать о наличии мультиколлинеарности. Далее можно применить эффективную процедуру отбора значащих факторов, которую назовем методом вращения факторов. В качестве основного критерия уместно использовать остаточную дисперсию - несмещенную выборочную оценку s2 параметра s2 возмущений e:
/.
Опишем процедуру отбора факторов методом вращения подробно. Пусть из теоретических соображений для объяснений изменения Y мы отобрали 6 объясняющих факторов-претендентов. Проверка показала высокую мультиколлинеарность. В произвольном порядке присваиваем переменным имена (для удобства буквенные): Xa, Xb, Xc, Xd, Xe, Xf. Затем строим шесть уравнений регрессий с факторами: (Xa), (Xa, Xb), (Xa, Xb, Xc), (Xa, Xb, Xc, Xd), (Xa, Xb, Xc, Xd, Xe), (Xa, Xb, Xc, Xd, Xe, Xf). Для каждого уравнения вычисляем остаточную дисперсию s2 и откладываем эти значения на графике рис. 4.1, верхняя ломаная. Как видно, каждая новая переменная, включенная в регрессию по порядку, примерно на одинаковую величину уменьшает остаточную дисперсию. Вывод: все факторы примерно одинаково значимы, и в уравнение нужно включить их все.
s2 | |||||||
D(Y) | a | ||||||
b | |||||||
c | c | ||||||
d | |||||||
e | e | f | |||||
d | |||||||
f | a | b | |||||
1 2 |
Рис. 4.1. Схема отбора значимых факторов
Картина резко меняется, если поступить иначе. Отбираем самый информативный фактор на 1-е место. Для этого строим шесть парных регрессий и для каждой вычисляем остаточную дисперсию s2. В искомое уравнение включаем тот фактор, у которого наименьшая дисперсия s2. В нашем примере это Хс. Далее ищем второй по значимости фактор. Для этого строим пять регрессий с парами факторов, один их которых присутствует всегда - Хс. Для каждой такой регрессии также вычисляем остаточные дисперсии s2. В примере наименьшую дисперсию дает фактор Хе, и т.д.
В работе [5, с. 111] в подобной процедуре в качестве критерия используется - скорректированный коэффициент детерминации.
Вывод: факторы по значимости резко разделились на две группы. Из шести мы отобрали три фактора, которые в совокупности дают небольшую дисперсию ошибки и практически полностью исключают коллинеарность. Заметим, что полное ее исключение обычно и не является целью исследования.
Дата добавления: 2019-10-16; просмотров: 531;