Алгоритм метода Гомори

Шаг 1. Симплекс-методом находим оптимальное решение задачи (22) без учета условия целочисленности. Если задача не имеет решения, то неразрешима и исходная задача ЦЛП. В этом случае алгоритм завершает работу.

Шаг 2. Пусть оптимальная таблица имеет вид:

  b
L
…………..

 

Если элементы – целочисленные, то оптимальное решение является целочисленным. В этом случае вычисления заканчиваем. Иначе, переходим к следующему шагу.

Шаг 3. Среди дробных компонент таблицы выбираем элемент с максимальной дробной частью и по строке i составляем дополнительное ограничение:

Здесь – целая часть числа (наибольшее целое число, не превышающее число ).

Шаг 4. Добавляем построенное ограничение к последней симплекс-таблице и, применяя двойственный симплекс-метод, находим оптимальное решение. Переходим к шагу 2.

Замечания

Признаком отсутствия целочисленного решения служит появление в таблице хотя бы одной строки с дробным свободным членом и целыми остальными коэффициентами (поскольку соответствующее уравнение неразрешимо в целых числах).

На шаге 4 двойственный симплекс-метод применяется до тех пор, пока не будет получена оптимальная симплексная таблица (возможно, потребуется несколько итераций).

Если на шаге 4 в базис вводится переменная дополнительного ограничения , то эта строка вычеркивается из симплексной таблицы (соответствующее ограничение является избыточным).








Дата добавления: 2017-09-19; просмотров: 464;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.