Предельные теоремы для схемы Бернулли

 

Теорема Пуассона. (Отметим, что на практике эта теорема применяется при Это означает, что p должно быть очень малым числом). Пусть имеется n независимых испытаний с вероятностью р успеха в одном испытании и q- вероятностью неудачи. Тогда для любого фиксированного m справедливо соотношение

, где

Пример.Машинистка печатает текст, который содержит 20000 знаков. Каждый знак может быть напечатан неправильно с вероятностью 0.0004. Какова вероятность того, что в тексте не менее 3 опечаток?

Решение. Если опечатку считать успехом, то к этой задаче применима схема Бернулли при p=0.0004, n=20000. Поскольку λ=np=8, то можно использовать предельную теорему Пуассона. Поэтому, искомая вероятность равна 1-Pn0- Pn1- Pn2=1-e-8- 8 e-8-(64/2) e-8= 1-41 e-8=0.986.

 

Пример.Монета бросается 100 раз. Найти приближенно вероятность того, что герб выпадет 40 раз. (Воспользоваться таблицей )

Решение.Если считать успехом выпадение герба, то вероятность успеха равна 1/2. Поэтому используя предельную локальную теорему Муавра-Лапласа, получим

, где

Таким образом, используя таблицы для плотности нормального распределения, получим P(A)=0.0108.

 

Интегральная теорема Муавра-Лапласа. Пусть имеется n независимых испытаний с вероятностью успеха p, , в одном испытании и - вероятностью неудачи. Величина не зависит от n. Тогда .для любых вещественных чисел a<b при

P(a< <b )=Φ(b)- Φ(a).

Здесь Φ(x)= - функция Лапласа, значения которой заданы в таблицах, приведенных в большинстве задачников по вероятности и математической статистике.

Пример.При рождении ребенка вероятность рождения мальчика равна 0.512. Найти вероятность того, что среди 1000 новорожденных мальчиков родится больше, чем девочек.

Решение.Пусть A – это событие, соответствующее вопросу задачи, m – это число рожденных мальчиков. Нетрудно видеть, что P(A) = P(m>500). Поскольку n=1000 можно считать достаточно большим, то применим интегральную теорему Муавра-Лапласа, согласно которой

P(A)=P(








Дата добавления: 2017-06-02; просмотров: 1941;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.007 сек.