КРАТКИЙ ОЧЕРК ИСТОРИИ АНАТОМИИ 53 страница
Рис. 300. Топография корковых центров речи (схема). Левое полушарие большого мозга.
1 — слуховой (акустический) центр; 2 — зрительный (оптический) центр речи; 3 — двигательный центр устной речи; 4 — двигательный центр письменной речи.
Отражая этот процесс филогенеза, у человека в онтогенезе сначала закладывается первая сигнальная система, а затем вторая. Чтобы вторая сигнальная система начала функционировать, требуется общение ребенка с другими людьми и приобретение навыков устной и письменной речи, на что уходит ряд лет. Если ребенок рождается глухим или теряет слух до того, как он начал говорить, то заложенная у него возможность устной речи не используется и ребенок остается немым, хотя звуки он произносить может. Точно так же, если человека не обучать чтению и письму, то он навсегда останется неграмотным. Все это свидетельствует о решающем влиянии окружающей среды для развития второй сигнальной системы. Последняя связана с деятельностью всей коры мозга, однако некоторые области ее играют особенную роль в осуществлении речи. Эти области коры являются ядрами анализаторов речи.
Поэтому для понимания анатомического субстрата второй сигнальной системы необходимо, кроме знания строения коры большого мозга в целом, учитывать также корковые концы анализаторов речи (рис. 300).
1. Так как речь явилась средством общения людей в процессе их совместной трудовой деятельности, то двигательные анализаторы речи выработались в непосредственной близости от ядра общего двигательного анализатора.
Двигательный анализатор артикуляции речи (речедвигательный анализатор) находится в задней части нижней лобной извилины (поле 44), в непосредственной близости от нижнего отдела моторной зоны. В нем происходит анализ раздражений, проходящих от мускулатуры, участвующей в создании устной речи. Эта функция сопряжена с двигательным анализатором мышц губ, языка и гортани, находящимся в нижнем отделе предцентральной извилйны, чем и объясняется близость речедвигательного анализатора к двигательному анализатору названных мышц. При поражении поля 44 сохраняется способность производить простейшие движения речевой мускулатуры, кричать и даже петь, но утрачивается возможность произносить слова — двигательная афазия (фазис — речь). Впереди поля 44 расположено поле 45, имеющее отношение к речи и пению. При поражении его возникает вокальная амузия — неспособность петь, составлять музыкальные фразы, а также аграмматизм — неспособность составлять из слов предложения.
2. Так как развитие устной речи связано с органом слуха, то в непосредственной близости к звуковому анализатору выработался слуховой анализатор устной речи. Его ядро помещается в задней части верхней височной извилины, в глубине латеральной борозды (поле 42). Благодаря слуховому анализатору различные сочетания звуков воспринимаются человеком как слова, которые означают различные предметы и явления и становятся
сигналами их (вторыми сигналами). С помощью его человек контролирует свою, речь и понимает чужую. При поражений его сохраняется способность слышать звуки, но теряется способность понимать слова — словесная глухота, или сенсорная афазия. При поражении поля 22 (средняя треть
# верхней височной извилины) наступает музыкальная глухота: больной не знает мотивов, а музыкальные звуки воспринимаются им как беспорядочный шум.
3. На более высокой ступени развития человечество научилось не только говорить, но и писать. Письменная речь требует определенных движений руки при начертании букв или других знаков, что связано с двигательным анализатором (общим). Поэтому двигательный анализатор письменной речи помещается в заднем отделе средней лобной извилины, вблизи зоны предцентральной извилины (моторная зона). Деятельность этого анализатора связана с анализатором необходимых при письме заученных движений руки (поле 40 в нижней теменной дольке). При повреждении поля 40 сохраняются все виды движения, но теряется способность тонких движений, необходимых для начертания букв, слов и других знаков (аграфия).
4. Так как развитие письменной речи связано и с органом зрения, то в непосредственной близости к зрительному анализатору выработался зрительный анализатор письменной речи, который, естественно, расположен вблизи sulcus calcarinus, в gyrus angularis (поле 39). При повреждении нижней теменной дольки сохраняется зрение, но теряется способность читать (алексия), т. е. анализировать написанные буквы и слагать из них слова и фразы.
Все речевые анализаторы закладываются в обоих полушариях, но развиваются только с одной стороны (у правшей — слева, у левшей — справа) и функционально оказываются асимметричными. Эта связь между двигательным анализатором руки (органа труда) и речевыми анализаторами объясняется тесной связью между трудом и речью, оказавшими решающее влияние на развитие мозга.
«...Труд, а затем и вместе с ним членораздельная речь...» привели к развитию мозга (Маркс К., Энгельс Ф. Соч., 2-е изд., т. 20, с. 490). Этой связью пользуются и в лечебных целях. При поражении речедвигательного анализатора сохраняется элементарная двигательная способность речевых мышц, но утрачивается возможность устной речи (моторная афазия). В этих случаях иногда удается восстановить речь длительным упражнением левой руки (у правшей), работа которой благоприятствует развитию зачаточного правостороннего ядра речедвигательного анализатора.
Анализаторы устной и письменной речи воспринимают словесные сигналы (как говорил И. П. Павлов, сигналы сигналов, или вторые сигналы), что составляет вторую сигнальную систему действительности, проявляющуюся в форме абстрактного отвлеченного мышления (общие представления, понятия, умозаключения, обобщения), которое свойственно только человеку. Однако морфологическую основу второй сигнальной системы составляют не только указанные анализаторы. Так как функция речи является филогенетически наиболее молодой, то она и наименее локализована. Так как кора растет по периферии, то наиболее поверхностные слои коры имеют отношение ко второй сигнальной системе. Эти слои состоят из большого числа нервных клеток (15 млрд) с короткими отростками, благодаря которым создается возможность неограниченной замыкательной функции, широких ассоциаций, что и составляет сущность деятельности второй сигнальной системы. При этом вторая сигнальная система функционирует не отдельно от первой, а в тесной связи с ней, точнее на основе ее, так как вторые сигналы могут возникнуть лишь при наличии первых. «Основные законы, установленные в работе первой сигнальной системы, должны также управ-
Рис. 301. Развитие новой коры (красный цвет) по отношению к старой коре (серый цвет).
I - акула; II — ящерица; III — кролик; IV — человек; 1 — lobus olfactorius; 2 — corpus striatum; 3 — diencephalon; 4 — mesencephalon; 5 — cerebellum; 6 — medulla oblongata.
лять и второй, потому что это работа все той же нервной ткани»
(И. П. Павлов).
Учение И. П. Павлова о двух сигнальных системах дает материалистическое объяснение психической деятельности человека и составляет естественнонаучную основу теории отражения В. И. Ленина. Согласно этой теории, в нашем сознании в форме субъективных образов отражается объективный реальный мир, существующий независимо от нашего сознания.
Ощущение — это субъективный образ объективного мира. «...Ощущение... есть превращение энергии внешнего раздражения в факт сознания» (Ленин В. И. Полн. собр. соч., т. 18, с. 46).
В рецепторе внешнее раздражение, например световая энергия, превращается в нервный процесс, который в коре мозга становится ощущением.
Одно и то же количество и качество энергии, в данном случае световой, у здоровых людей вызовет в коре мозга ощущение зеленого цвета
(субъективный образ), а у больного дальтонизмом (благодаря иному строению сетчатки глаза) — ощущение красного цвета.
Следовательно, световая энергия — это объективная реальность, а цвет — субъективный образ, отражение ее в нашем сознании, зависящее от устройства органа чувств (глаза).
Значит, с точки зрения ленинской теории отражения мозг может быть охарактеризован как орган отражения действительности.
После всего сказанного о строении центральной нервной системы можно отметить «человеческие» признаки строения мозга, т. е. специфические черты строения его, отличающие человека от животных (рис. 301, 302).
1. Преобладание головного мозга над спинным. Так, у хищных (например, у кошки) головной мозг в 4 раза тяжелее спинного, у приматов (например, у макак) — в 8 раз, а у человека — в 45 раз (масса спинного мозга 30 г, головного — 1500 г). Спинной мозг составляет у млекопитающих 22 — 48% массы головного мозга, у гориллы — 5 — 6 %, у человека — только 2 %.
2. Масса мозга. По абсолютной массе мозга человек не занимает первого места, так как у крупных животных мозг тяжелее, чем у человека (1500 г): у дельфина — 1800 г, у слона — 5200 г, у кита — 7000 г. Чтобы
Рис. 302. Строение мозга медведя (а), обезьяны (б), человека (в). Цифрами обозначены корковые концы анализаторов речи. |
вскрыть истинные отношения массы мозга к массе тела, используют так называемый квадратный указатель мозга, т. е. произведение абсолютной массы мозга на относительную. Этот указатель позволил выделить человека из всего животного мира. Так, у грызунов он равен 0,19, у хищных— 1,14, у китообразных (дельфин) — 6,27, у человекообразных обезьян — 7,35, у слонов — 9,82 и, наконец, у человека — 32,0.
3. Преобладание плаща над мозговым стволом, т. е. нового мозга (neencephalon) над древним (paleencephalon).
4. Наивысшее развитие лобной доли большого мозга. На лобные доли приходится у низших обезьян 8 — 12% всей поверхности полушарий, у антропоидных обезьян — 16 %, у человека — 30 %.
5. Преобладание новой коры полушарий большого мозга над старой.
6. Преобладание коры над подкоркой, которое у человека достигает максимальных цифр: кора составляет 53,7 % всего объема мозга, а базальные ядра — только 3,7 %.
7. Борозды и извилины увеличивают площадь коры серого вещества, поэтому чем больше развита кора полушарий большого мозга, тем больше и складчатость мозга. Увеличение складчатости достигается большим развитием мелких борозд третьей категории, глубиной борозд и их асимметричным расположением. Ни у одного животного нет одновременно такого большого числа борозд и извилин, при этом столь глубоких и асимметричных, как у человека.
8. Наличие второй сигнальной системы, анатомическим субстратом которой являются самые поверхностные слои мозговой коры.
Подводя итоги изложенному, можно сказать, что специфическими чертами строения мозга человека, отличающими его от мозга самых высокоразвитых животных, является максимальное преобладание молодых частей центральной нервной системы над старыми: головного мозга над спинным, плаща над стволом, новой коры над старой, поверхностных слоев мозговой коры над глубокими.
Ложность «теории» расизма в учении о мозге
Чтобы оправдать стремление империалистических кругов к мировому господству, находящиеся на службе эксплуататорских классов реакционные ученые создали «теорию» расизма, согласно которой народы мира изначально делятся на передовые и отсталые, а человеческие расы — на высшие и низшие. Высшие расы имеют, по мнению расистов, право на покорение низших не только в силу экономической и политической отсталости последних, но и вследствие якобы их более низкой биологической организации.
В качестве аргументов для отнесения к более низкой организации привлекаются некоторые признаки строения мозга, а именно: сравнительно меньшие масса и объем мозга, меньшее число борозд и извилин, редкие вариации их, наличие борозд, более выраженных у приматов, например обезьянья борозда в затылочной доле, а также ряд других признаков.
Однако все эти особенности строения мозга не могут служить признаками низшего развития. В самом деле, если взять абсолютную массу мозга, то она не может являться показателем умственного развития человека, так как у гениальных людей можно встретить мозг самой различной массы. Масса мозга людей колеблется от 1100 до 2000 г. Тяжелый мозг встречается не только у умственно одаренных людей, но и у людей среднего развития, а также у эпилептиков и идиотов. Так, самый тяжелый мозг из всех известных до настоящего времени (2850 г) принадлежал идиоту-эпилептику 21 года. Приводимая А. Якобом сводка цифр массы мозга 50 выдающихся деятелей различных специальностей показывает, что масса их мозга колеблется в широких границах, так что никоим образом нельзя провести прямые параллели между массой мозга и одаренностью. Так, если сравнить массу мозга крупнейших писателей — И. С. Тургенева и Анатоля Франса, то при одинаковом характере их одаренности мозг И. С. Тургенева был более тяжелым (2012 г), а мозг Анатоля Франса вдвое легче (1017 г), что не помешало Анатолю Франсу проявить свой талант. То же наблюдается и при сравнении мозга других выдающихся людей, например поэтов Байрона (2238 г) и Уитмена (1282 г), ученых-зоологов Кювье (1830 г) и Агассица (1495 г) и др.
Такая же картина наблюдается при сравнении у различных гениальных людей абсолютного объема мозга и черепа: например, у Гете окружность головы 60 см, у Данте — 54 см, что не помешало Данте написать свое бессмертное произведение «Божественная комедия».
Как показали исследования JI. Я. Пинеса, обезьянья борозда с одинаковой частотой встречается на внутренней поверхности затылочной доли мозга у представителей различных рас и у интеллектуально выдающихся лиц. Развитие других борозд и извилин также подвержено различным вариациям, с одинаковой частотой встречающихся у разных народов. Ряд объективных буржуазных исследователей высказываются, что на основании наличия различных борозд нельзя, делать заключение об умственной одаренности. Таким образом, отмеченные особенности строения мозга являются не расовыми признаками, а вариантами индивидуальной изменчивости, которой подвержены все органы, в том числе и мозг. Закономерное нарастание массы и объема мозга действительно имеет место в эволюции человека, но оно происходит в течение сотен тысячелетий. Так, у человекообразных обезьян масса мозга 400 — 500 г, а у современного человека — 1100 —2000 г (в среднем 1500 г).
Что же касается современных людей, то колебания массы и объема мозга не отражают степени умственного развития. Культурная и политическая отсталость народов обусловливается не биологической организацией (строение мозга и всего тела человека), а социальными условиями жизни общества. Яркий пример этого мы видим в Индии и других бывших колониальных странах. Там раньше, чем в Европе, возникла древняя и весьма высокая культура, создавшая замечательные памятники искусства, зодчества и литературы. Однако после порабощения Индии англичанами, за три столетия колониального гнета, развитие индийского народа резко затормозилось, и он отстал от завоевавших его европейцев. Теперь, когда порабощенные народы сбросили ярмо колониализма и снова стали свободными, они быстро идут по пути социального прогресса. Таким образом, необходимо видеть реакционную политическую сущность расизма и разоблачать ее, опираясь на строго научные морфологические факты.
Оболочки головного мозга
Оболочки головного мозга, meninges, составляют непосредственное продолжение оболочек спинного мозга — твердой, паутинной и мягкой.
Твердая оболочка, dura mater encephali, — плотная белесоватая соединительнотканная оболочка, лежащая снаружи от остальных оболочек. Наружная ее поверхность непосредственно прилежит к черепным костям, для которых твердая оболочка служит надкостницей, в чем состоит ее отличие от такой же оболочки спинного мозга. Внутренняя поверхность, обращенная к мозгу, покрыта эндотелием и вследствие этого гладкая и блестящая. Между ней и паутинной оболочкой мозга находится узкое щелевидное пространство, spatium subdurale, заполненное небольшим количеством жидкости. Местами твердая оболочка расщепляется на два листка. Такое расщепление имеет место в области венозных синусов (см. ниже), а также в области ямки у верхушки пирамиды височной кости (impressio trigemini), где лежит узел тройничного нерва. Твердая оболочка отдает со своей внутренней стороны несколько отростков, которые, проникая между частями мозга, отделяют их друг от друга (рис. 303).
Falx cerebri, серп большого мозга, расположен в сагиттальном направлении между обоими полушариями большого мозга. Прикрепляясь по средней линии черепного свода к краям sulcus^ sinus sagittalis superioris, он своим передним узким концом прирастает к crista galli, а задним широким срастается с верхней поверхностью мозжечкового намета.
Tentorium cerebelli, намет мозжечка, представляет горизонтально натянутую пластинку, слегка выпуклую кверху наподобие двускатной крыши. Пластинка эта прикрепляется по краям sulcus sinus transversi затылочной кости и вдоль верхней грани пирамиды височной кости на обеих сторонах до processus clinoideus posterior клиновидной кости. Намет мозжечка отделяет затылочные доли большого мозга от нижележащего мозжечка.
Falx cerebelli, серп мозжечка, располагается, так же как и серп большого мозга, по средней линии вдоль crista occipitalis interna до большого отверстия затылочной кости, охватывая последнее по бокам двумя ножками; этот невысокий отросток вдается в заднюю вырезку мозжечка.
Diaphragma sellae, диафрагма седла, пластинка, ограничивающая сверху вместилище для гипофиза на дне турецкого седла. В середине она прободается отверстием для пропуска воронки, infundibulum, к которой прикрепляется hypophysis.
Кровеносные сосуды твердой оболочки питают также кости черепа и образуют на внутренней пластинке последних вдавления, sulci meningei. Из артерий самая крупная a. meningea media, ветвь a. maxillaris, проходящая в череп через foramen spinosum клиновидной кости. В передней черепной ямке разветвляется небольшая ветвь из a. ophthalmica, а в задней — веточки из a. pharyngea ascendens, из a. vertebralis и из a. occipitalis, проникающие через foramen mastoideum. Вены твердой оболочки сопровождают соотаетствующие артерии, обычно по две, и впадают частью в синусы, частью в plexus pterygoideus.
Нервы. Твердая оболочка иннервируется тройничным нервом.
Рис. 303. Твердая оболочка головного мозга и ее венозные синусы. |
1, 18 — sinus petrosus superior (dexter et sinister); 2 — sinus petrosus inferior; 3 — falx cerebri; 4 — sinus sagittalis superior; 5 — sinus sagittalis inferior; 6 — infundibulum; 7 — a. carotis interna; Ј — n. opticus;
9 — crista galli; 10, 14 — sinus intercavernosus; 11 — sinus sphenoparietalis; 12 — v. cerebri media; 13 — diaphragma sellae; 15 — dorsum sellae; 16 — sinus cavernosus; 17 — plexus basillaris; 19 — bulbus superior v. jugularis internae; 20 — sinus sigmoideus; 21 — tentorium cerebelli; 22 —vv. cerebri inferiores; 23- sinus transversus; 24 — confluens sinuum; 25 — sinus rectus; 26 —v. cerebri magna; 27 — vv. cerebri superiores.
Кроме собственных вен, твердая оболочка содержит ряд вместилищ, собирающих кровь из мозга и называемых синусами твердой оболочки, sinus durae matris (см. рис. 303).
Синусы представляют венозные, лишенные клапанов каналы (треугольные в поперечном сечении), залегающие в толще самой твердой оболочки по местам прикрепления ее отростков к черепу и отличающиеся от вен строением своих стенок. Последние образованы туго натянутыми листками твердой оболочки, вследствие чего не спадаются при разрезе и при ранении зияют. Неподатливость стенок венозных синусов обеспечивает свободный отток венозной крови при смене внутричерепного давления, что важно для бесперебойной деятельности головного мозга, чем и объясняется наличие таких венозных синусов только в черепе.
Имеются следующие синусы:
Sinus transversus — самый большой и широкий, расположен по заднему краю tentorium cerebelli в sulcus sinus transversi затылочной кости, откуда спускается как sinus sigmoideus в siilcus sinus sigmoidei и далее у foramen jugulare переходит в устье v. jugularis interna. Благодаря этому поперечный синус с сигмовидным служит главным коллектором для всей венозной крови черепной полости. В него частью непосредственно, частью опосредованно впадают все остальные синусы. Непосредственно в него впадают:
Sinus sagittalis superior идет по верхнему краю falx cerebri вдоль всего sulcus sinus sagittalis superioris от crista galli до protuberantia occipitalis interna; по бокам sinus sagittalis superior, в толще твердой оболочки, заложены так называемые кровяные озера — небольшие полости, сообщающиеся с одной стороны с синусом и диплоическими венами, а с другой — с венами твердой оболочки и мозга.
Sinus occipitalis — как бы продолжение предыдущего вдоль места прикрепления falx cerebelli к crista occipitalis interna и далее (после раздвоения) по обоим краям foramen magnum затылочной кости.
Sinus rectus на линии прикрепления falx cerebri к tentorium cerebelli. Он принимает спереди sinus sagittalis inferior, идущий вдоль нижнего свободного края falx cerebri, а также v. cerebri magna, по которой кровь оттекает из глубоких частей мозга.
В месте, где сходятся названные синусы (sinus transversus, sinus sagittalis superior, sinus rectus и sinus occipitalis), образуется общее расширение, известное под именем стока синусов, confluens sinuum. На основании черепа сбоку турецкого седла расположен пещеристый синус, sinus cavernosus, имеющий вид или венозного сплетения, или широкой лакуны, окружающей внутреннюю сонную артерию. Он соединяется с таким же синусом другой стороны двумя поперечными анастомозами, sinus intercaverndsi, проходящими спереди и сзади fossa hypophysialis, вследствие чего в области турецкого седла образуется венозное кольцо.
Пещеристый синус представляет сложный анатомический комплекс, в состав которого, кроме самого синуса, входят внутренняя сонная артерия, нервные стволы и окружающая их соединительная ткань. Все эти образования составляют как бы особый прибор, играющий важную роль в регуляции внутричерепного тока венозной крови. Спереди в пещеристый синус вливаются v. ophthalmica superior, проходящая через верхнюю глазничную щель, а также нижний конец sinus sphenoparietalis, идущего вдоль края alae minoris.
Отток крови из sinus cavernosus совершается в два лежащих сзади синуса: sinus petrosus superior et inferior, заложенные в соименных желобках, sulcus sinus petrosi superioris et inferioris. Оба sinus petrosi inferiores соединяются между собой несколькими венозными каналами, которые лежат в толще твердой оболочки на базилярной части затылочной кости и называются в своей совокупности plexus basilaris. Plexus basilaris сообщается с венозными сплетениями позвоночного канала, через которые таким образом оттекает кровь из полости черепа.
Главным путем оттока крови из синусов служат внутренние яремные вены, но, кроме того, венозные синусы соединяются с венами наружной поверхности черепа посредством так называемых эмиссарных вен, vv. emissa- riae, проходящих через отверстия в черепных костях (foramen parietale, foramen mastoideum, canalis condylaris см. «Остеология»). Такую же роль играют небольшие вены, выходящие из черепа вместе с нервами через foramen ovale, foramen rotiindum и canalis hypoglossalis. В синусы твердой оболочки также впадают venae diploicae, вены губчатого вещества костей черепа; другим концом они могут иметь связь с наружными венами головы. Venae diploicae представляют анастомозирующие друг с другом каналы, выстланные изнутри слоем эндотелия и проходящие в губчатом веществе плоских костей черепа.
Рис. 304. Схема взаимоотношений оболочек головного мозга и грануляций паутинной оболочки. |
1, 16 — granulationes arachnoideales; 2 — v. emissaria; 3 — v. diploica; 4 — diploe; 5 — dura mater encephali;
6 — trabeculae arachnoideales; 7 — spatium peri vasculare; 8 — cavitas subarachnoidealis; 9 — pia mater; 10 — arachnoidea; 11— falx cerebri; 12 — sinus sagittalis superior; 13 — cortex cerebri; 14 — r. corticalis a. cerebri; 15 — r. corticalis v. cerebri.
Паутинная оболочка, arachnoidea encephali (рис. 304), так же как и в
спинном мозге, отделяется от твердой оболочки капиллярной щелью субду- рального пространства. Паутинная оболочка не заходит в глубину борозд и углублений мозга, как pia mater, но перекидывается через них в виде мостиков, вследствие чего между ней и мягкой оболочкой находится подпаутинное пространство, cavitas subarachnoidealis, которое наполнено прозрачной жидкостью. В некоторых местах, преимущественно на основании мозга, подпаутинные пространства развиты особенно сильно, образуя широкие и глубокие вместилища спинномозговой жидкости, называемые цистернами (рис. 305).
Имеются следующие цистерны:
1. Cisterna cerebellomedullaris (самая большая) между задним краем мозжечка и продолговатым мозгом.
2. Cisterna interpeduncularis между pedunculi cerebri.
3. Cisterna chiasmatis впереди chiasma opticum.
4. Cisterna fossae lateralis cerebri в соименной ямке.
Все подпаутинные пространства широко сообщаются между собой и у большого отверстия затылочной кости непосредственно продолжаются в подпаутинное пространство спинного мозга. Кроме того, они находятся в прямом сообщении с желудочками мозга через отверстия в области задней стенки IV желудочка: apertura mediana ventriculi quarti, открывающееся в cisterna cerebellomedullaris, и apertura lateralis ventriculi IV. В подпаутинных пространствах залегают мозговые сосуды, которые соединительнотканными перекладинами, trabeculae arachnoideales, и окружающей жидкостью предохраняются от сдавления.
Особенностью строения паутинной оболочки являются так называемые грануляции паутинной оболочки, granulationes arachnoideales, пред-
Рис. 305. Подпаутинные пространства.
1 — cisterna chiasmatis; 2 — chiasma opticum; 3 — cisterna interpeduncularis; 4 — подпаутинное пространство спинного мозга; 5 — cisterna се- rebellomedullaris; б — arachnoidea; 7 — подпаутинное пространство над мозолистым телом; 8 — подпаутинное пространство в бороздах.
ставляющие выросты паутиннои оболочки в виде кругловатых телец серо-розового цвета, вдающихся в полость венозных синусов или же в лежащие рядом кровяные озера (см. рис. 304). Они имеются у детей и у взрослых, но наибольшей величины и многочисленности достигают в старости. Увеличиваясь в размерах, грануляции своим давлением на черепные кости образуют на внутренней поверхности последних углубления, известные в остеологии под названием foveolae granulares. Грануляции служат для оттока спинномозговой жидкости в кровяное русло путем фильтрации.
Мягкая оболочка, pia mater encephali, тесно прилегает к мозгу, заходя во все борозды и щели его поверхности, и содержит кровеносные сосуды и сосудистые сплетения (см. рис. 287). Между оболочкой и сосудами существует периваскулярная щель, сообщающаяся с подпаутинным пространством.
Спинномозговая жидкость
Спинномозговая жидкость, tiquor cerebrospinafls, наполняющая подпаутинные пространства головного и спинного мозга и мозговые желудочки, резко отличается от других жидкостей организма. С ней сходны только эндо- и перилимфа внутреннего уха и водянистая влага глаза. Выделение спинномозговой жидкости происходит путем секреции из plexus chorofdei, эпителиальная обкладка которых имеет характер железистого эпителия. Аппарат, продуцирующий liquor cerebrospinalis, обладает свойством пропускать в жидкость одни вещества и задерживать другие (гематоэнцефалический барьер), что имеет большое значение для предохранения мозга от вредных влияний. Таким образом, по своим особенностям спинномозговая жидкость является не только механическим защитным приспособлением для мозга и лежащих на его основании сосудов, но и специальной внутренней средой, которая необходима для правильного функционирования центральных органов нервной системы. Пространство, в котором помещается liquor cerebrospi- nalis, замкнуто. Отток жидкости из него совершается путем фильтрации главным образом в венозную систему через посредство грануляций паутинной оболочки, а отчасти также и в лимфатическую систему через влагалища нервов, в которые продолжаются мозговые оболочки.
Рис. 306. Схема васкуляризации головного мозга. а - наружная поверхность: зоны a. cerebri media (светлые); зоны аа. cerebri anterior et posterior (заштрихованы); б — внутренняя поверхность: зоны a. cerebri anterior (мелкие точки), media (клетки) и posterior (линии). Мозолистое тело (красный цвет). |
Дата добавления: 2016-06-24; просмотров: 461;