Предпосылки классической многомерной линейной регрессионной модели.

Сформируем предпосылки, которые необходимы при выводе уравнении для оценок параметров модели, изучения их свойств и тестирования качества модели. Эти предпосылки обобщают и дополняют предпосылки классической модели парной линейной регрессии (условия Гаусса – Маркова).

Предпосылка 1.независимые переменныене случайны и измеряются без ошибок. Это означает, что матрица наблюдений Х – детерминированная.

Предпосылка 2. (первое условие Гаусса – Маркова): Математическое ожидание случайной составляющей в каждом наблюдении равно нулю.

Предпосылка 3. (второе условие Гаусса – Маркова): теоретическая дисперсия случайной составляющей одинакова для всех наблюдений.

(Это гомоскедастичность)

Предпосылка 4. (третье условие Гаусса – Маркова): случайные составляющие модели не коррелированны для различных наблюдений. Это означает, что теоретическая ковариация

Предпосылки (3) и (4) удобно записать, используя векторные обозначения:

матрица - симметричная матрица. - единичная матрица размерности n, верхний индекс Т – транспонирование.

Матрица называется теоретической матрицей ковариаций (или ковариационной матрицей).

Предпосылка 5. (четвертое условие Гаусса – Маркова): случайная составляющая и объясняющие переменные не коррелированны (для модели нормальной регрессии это условие означает и независимость). В предположении, что объясняющие переменные не случайные, эта предпосылка в классической регрессионной модели всегда выполняется.

Предпосылка 6. коэффициенты регрессии – постоянные величины.

Предпосылка 7. уравнение регрессии идентифицируемо. Это означает, что параметры уравнения в принципе оцениваемы, или решение задачи оценивания параметров существует и единственно.

Предпосылка 8. регрессоры не коллинеарны. В таком случае матрица наблюдений регрессоров должна быть полного ранга. (ее столбцы должны быть линейно независимы). Данная предпосылка тесно связана с предыдущей, так как при применении для оценивания коэффициентов МНК ее выполнение гарантирует идентифицируемость модели (если количество наблюдений больше количества оцениваемых параметров).

Предпосылка 9. Количество наблюдений больше количества оцениваемых параметров, т.е. n>k.

Все эти 1-9 предпосылки одинаково важны, и только при их выполнении можно применять классическую регрессионную модель на практике.

Предпосылка о нормальности случайной составляющей. При построении доверительных интервалов для коэффициентов модели и прогнозов зависимой переменной, проверки статистических гипотез относительно коэффициентов, разработке процедур для анализа адекватности (качества) модели в целом необходимо предположение о нормальном распределении случайной составляющей. С учетом этой предпосылки модель (1) называется классической многомерной линейной моделью регрессии.

Если предпосылки не выполняются, то необходимо строить так называемые обобщенные модели линейной регрессии. От того, насколько корректно (правильно) и осознанно используются возможности регрессионного анализа, зависит успех эконометрического моделирования, и в конечном счете, обоснованность принимаемых решений.








Дата добавления: 2016-05-16; просмотров: 1352;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.