Предпосылки классической многомерной линейной регрессионной модели.
Сформируем предпосылки, которые необходимы при выводе уравнении для оценок параметров модели, изучения их свойств и тестирования качества модели. Эти предпосылки обобщают и дополняют предпосылки классической модели парной линейной регрессии (условия Гаусса – Маркова).
Предпосылка 1.независимые переменныене случайны и измеряются без ошибок. Это означает, что матрица наблюдений Х – детерминированная.
Предпосылка 2. (первое условие Гаусса – Маркова): Математическое ожидание случайной составляющей в каждом наблюдении равно нулю.
Предпосылка 3. (второе условие Гаусса – Маркова): теоретическая дисперсия случайной составляющей одинакова для всех наблюдений.
(Это гомоскедастичность)
Предпосылка 4. (третье условие Гаусса – Маркова): случайные составляющие модели не коррелированны для различных наблюдений. Это означает, что теоретическая ковариация
Предпосылки (3) и (4) удобно записать, используя векторные обозначения:
матрица - симметричная матрица. - единичная матрица размерности n, верхний индекс Т – транспонирование.
Матрица называется теоретической матрицей ковариаций (или ковариационной матрицей).
Предпосылка 5. (четвертое условие Гаусса – Маркова): случайная составляющая и объясняющие переменные не коррелированны (для модели нормальной регрессии это условие означает и независимость). В предположении, что объясняющие переменные не случайные, эта предпосылка в классической регрессионной модели всегда выполняется.
Предпосылка 6. коэффициенты регрессии – постоянные величины.
Предпосылка 7. уравнение регрессии идентифицируемо. Это означает, что параметры уравнения в принципе оцениваемы, или решение задачи оценивания параметров существует и единственно.
Предпосылка 8. регрессоры не коллинеарны. В таком случае матрица наблюдений регрессоров должна быть полного ранга. (ее столбцы должны быть линейно независимы). Данная предпосылка тесно связана с предыдущей, так как при применении для оценивания коэффициентов МНК ее выполнение гарантирует идентифицируемость модели (если количество наблюдений больше количества оцениваемых параметров).
Предпосылка 9. Количество наблюдений больше количества оцениваемых параметров, т.е. n>k.
Все эти 1-9 предпосылки одинаково важны, и только при их выполнении можно применять классическую регрессионную модель на практике.
Предпосылка о нормальности случайной составляющей. При построении доверительных интервалов для коэффициентов модели и прогнозов зависимой переменной, проверки статистических гипотез относительно коэффициентов, разработке процедур для анализа адекватности (качества) модели в целом необходимо предположение о нормальном распределении случайной составляющей. С учетом этой предпосылки модель (1) называется классической многомерной линейной моделью регрессии.
Если предпосылки не выполняются, то необходимо строить так называемые обобщенные модели линейной регрессии. От того, насколько корректно (правильно) и осознанно используются возможности регрессионного анализа, зависит успех эконометрического моделирования, и в конечном счете, обоснованность принимаемых решений.
Дата добавления: 2016-05-16; просмотров: 1352;