Дополнительное предположение о нормальном распределении ошибок
При выполнении условий Гаусса-Маркова, оценки наименьших квадратов обладают такими свойствами, как несмещенность, состоятельность и оптимальность (эффективность). Однако, для построения доверительных интервалов и проверки гипотез относительно истинных значений параметров, необходимо дополнительное предположение о распределении случайной составляющей εi. В классическом регрессионном анализе допускается, что эта составляющая распределена по нормальному закону и тогда модель называют классической нормальной линейной регрессией. (1-4) достаточно, а 5 необходимо для оценки точности уравнения регрессии.
Данное предположение является, пожалуй, наиболее спорным. Дело в том, что предположение о нормальности можно считать правдоподобным, если значения случайной величины порождаются в результате воздействия большого количества независимых случайных факторов, каждый из которых не обязательно имеет нормальное распределение. Примером такого воздействия является так называемое броуновское движение (хаотичное движение малых частиц в жидкости как результат совокупного воздействия на частицу — ударов, соударения — большого количества молекул жидкости).
В экономических процессах распределения случайных величин, как правило, отличаются от нормального, поскольку механизм их порождения более сложный. Тем не менее, чаще всего именно нормальное распределение используется в эконометрических исследованиях (как, впрочем, и в статистике). Это обусловлено следующими причинами. Во-первых, нормальный закон действительно часто достаточно хорошо (с приемлемой для практики точностью) аппроксимирует (приближенно описывает) распределение случайной составляющей. Во-вторых, что очень важно, на основе нормального распределения можно получить процедуры проверки гипотез и построения доверительных интервалов, удобные для расчетов и применения на практике. В любом случае, не изучив базовые результаты (процедуры), основанные на предположении нормальности, нельзя продвигаться на более высокий уровень изучения и применения более реалистичных моделей, не использующих эту предпосылку и позволяющих получать более точные результаты.
Замечание. Если случайные величины в модели распределены по нормальному закону, то из свойств некоррелированности в третьем и четвертом условиях Гаусса-Маркова следует и независимость соответствующих случайных величин.
Оценкой модели является уравнение:
а - оценка они определяются МНК
b - оценка
Несмещенная оценка остаточной дисперсии учитывает воздействие факторов и ошибок неучтенных в модели, определяется с помощью дисперсии возмущения (ошибок) или остаточной дисперсии σ2, - это выборочная остаточная дисперсия.
Являются ли оценки a, b и s2 наилучшими выясняется по условиям Гаусса-Маркова: если регрессионная модель удовлетворяет предпосылкам 1-4, то оценки a и b имеют наименьшую дисперсию в классе линейных несмещенных оценок.
Дата добавления: 2016-05-16; просмотров: 1009;