I. Аксиомы принадлежности

Схема построения геометрии

 

Перечисляются основные неопределяемые понятия.

Формулируются свойства основных понятий - аксиомы.

Определяются другие геометрические понятия.

Формулируются и доказываются свойства геометрических понятий - теоремы.

АКСИОМЫ СТЕРЕОМЕТРИИ. СЛЕДСТВИЯ ИЗ АКСИОМ

Основные понятия стереометрии: точка, прямая, плоскость, расстояние.

Определение: Аксиомой называется предложение, не требующее доказательства.

Основные свойства точек, прямых и плоскостей, касающиеся их взаимного расположения, выражены в аксиомах. Вся система аксиом стереометрии состоит из ряда аксиом, известных нам по курсу планиметрии, и аксиом о взаимном расположении точек, прямых и плоскостей в пространстве.

 

АКСИОМЫ СТЕРЕОМЕТРИИ

I. Аксиомы принадлежности

I1. Существуют хотя бы одна прямая и хотя бы одна плоскость. Каждая прямая и каждая плоскость есть не совпадающее с пространством непустое множество точек.

Обозначение:

А, В, С, D точки;

а, b, с прямые;

a , b , g плоскости;

А Î а точка А принадлежит прямой а, прямая а проходит через точку А;

Е Ï а точка Е не принадлежит прямой а;

С Î a точка С принадлежит плоскости a , плоскость a проходит через точку С;

Е Ï a точка Е не принадлежит плоскости a .

Вывод: Существуют точки, принадлежащие прямой и не принадлежащие прямой, существуют точки, принадлежащие плоскости и не принадлежащие плоскости.

I2. Через две различные точки проходит одна и только одна прямая.

 
 


Обозначение: а = АВ

Вывод: Прямые, имеющие две различные общие точки, совпадают.

I3. Прямая, проходящая через две любые точки плоскости, лежит в этой плоскости.

 
 


Обозначение:

а Ì a плоскость a проходит через прямую а;

b Ë a плоскость a не проходит через прямую b.

I4. Через три точки, не принадлежащие одной прямой, проходит одна и только одна плоскость.

Обозначение: a = АВС

Вывод: Плоскости, имеющие три различные общие точки, совпадают.

 

I5. Если две различные плоскости имеют общую точку, то их пересечением является прямая.

Обозначение: М Î a , М Î b , a ¹ b , a ìüb = l.








Дата добавления: 2016-05-11; просмотров: 3684;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.