СЛЕДСТВИЯ ИЗ АКСИОМ

Следствие 1: Через прямую и не принадлежащую ей точку можно провести одну и только одну плоскость.

 
 


Дано: М, а, М Ï а

Доказать:

1. ;

2. .

Доказательство:

1. Выберем на прямой а точки А и В (аксиома I1): АÎ а, ВÎ а.

Через точки М, А, В проходит плоскость a (аксиома I4): a = МАВ.

Так как точки А, В принадлежат плоскости a , то прямая а принадлежит плоскости a (аксиома I3): а Ì a .

Следовательно, существует плоскость a , проходящая через прямую а и не принадлежащую ей точку М: .

2. Плоскость a содержит прямую а и точку М, то есть проходит через точки М, А, В. Через три точки, не принадлежащие одной прямой, проходит единственная плоскость (аксиома I4).

Следствие 2: Через две пересекающиеся прямые можно провести одну и только одну плоскость.

 
 


Дано: а, b, а ´ b

Доказать:

1. ;

2. .

Доказательство:

1. Обозначим точку пересечения прямых а и b: .

Выберем на прямой а точку А, на прямой b точку В (аксиома I1): АÎ а, ВÎ b.

Через точки М, А, В проходит плоскость a (аксиома I4): a = МАВ.

Так как точки А, М принадлежат плоскости a , то прямая а принадлежит плоскости a (аксиома I3): АМ = а Ì a .

Так как точки В, М принадлежат плоскости a , то прямая b принадлежит плоскости a (аксиома I3): ВМ = b Ì a .

Следовательно, существует плоскость a , проходящая через две пересекающиеся прямые а и b: .

2. Плоскость a содержит прямые а и b, то есть проходит через точки М, А, В. Через три точки, не принадлежащие одной прямой, проходит единственная плоскость (аксиома I4).

Определение: Прямые называются параллельными, если они лежат в одной плоскости и не имеют общих точек или совпадают.

Следствие 3: Через две параллельные прямые можно провести одну и только одну плоскость.

Дано: а, b,

Доказать:

1. ;

2. .

Доказательство:








Дата добавления: 2016-05-11; просмотров: 1730;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.