Функция распределения СВ
Функцией распределения вероятностей случайной величины называется функция некоторого аргумента , численное значение которой равно вероятности того, что случайная величина примет значение, меньшее :
.
Это определение справедливо как для дискретной, так и для непрерывной случайной величины.
Свойства функции распределения.
1. есть неубывающая функция своего аргумента , то есть если , то .
2. , .
3. принимает значения от 0 до 1: .
4. Вероятность попадания случайной величины на заданный интервал равна разности значений функции:
.
Пример. Возьмем ряд распределения дискретной случайной величины Х из рассмотренного выше примера про попадания в мишень:
0,008 | 0,096 | 0,384 | 0,512 |
Найти функцию распределения , построить ее график.
Решение.
1) Если , то . Действительно, значений, меньших, чем 0, случайная величина Х не принимает. Следовательно, при функция распределения ;
2) Если , то ;
3) Если , то
;
4) Если , то ;
5) Если , то ;
Функция распределения ДСВ примет вид:
График функции распределения имеет вид (рис.2):
Рис.2. График функции распределения ДСВ |
Замечание 1. Когда текущая переменная проходит через какое-то из своих возможных значений, функция распределения меняется скачкообразно, причем величина скачка равна вероятности этого значения.
Замечание2. Функция распределения дискретной случайной величины имеет вид:
.
Здесь суммирование ведется по всем , для которых .
В рассмотренном примере функцию распределения можно было бы записать следующим образом:
Функция распределения полностью характеризует случайную величину как дискретную, так и непрерывную. Функцию распределения еще называют интегральным законом распределения.
Дата добавления: 2016-04-22; просмотров: 535;