Предел последовательности

Число а называется пределом последовательности {xn}, если для любого числа ε > 0 существует номер N такой, что для всех номеров n > N выполняется неравенство Ι xn – a Ι < ε.

Неравенство Ι xn – a Ι < ε можно переписать в следующем виде: a – ε < xn < a + ε. Геометрически последние неравенства означают, что числа xn принадлежат интервалу (а – ε, а + ε). Поэтому понятие предела имеет следующую геометрическую интерпретацию: число а будет являться пределом последовательности {xn}, если для любого интервала (а – ε, а + ε) существует номер N такой, что для всех номеров, больших этого номера, соответствующие элементы последовательности обязательно будут принадлежать указанному интервалу.

Существование предела последовательности {xn} обозначается следующим образом:

 

Бесконечно большие последовательности не имеют предела, поэтому принято считать, что они имеют бесконечный предел, и писать: .

 

Бесконечно малые последовательности имеют предел, равный нулю, т.е.: .

 

Последовательность называется сходящейся, если она имеет предел, и расходящейся, если она предела не имеет, или имеет бесконечный предел.

Последовательность {xn} называется ограниченной, если существует число M > 0 такое, что для всех элементов последовательности выполняется неравенство Ι xn Ι< M.

 

Всякая сходящаяся последовательность имеет единственный предел

 

Всякая сходящаяся последовательность ограничена

 

Всякая монотонная и ограниченная последовательность имеет предел

Для отыскания пределов различных последовательностей существуют полезные правила, справедливые только для сходящихся последовательностей.

Если , то:

1. .

2. .

3. .

4. при условии, что все bn ≠ 0 и b ≠ 0.

 

Рекомендуемая литература по теме 2:[1 ÷ 2].

 

ВОПРОСЫ для самопроверки знаний по теме 2:

1. Будет ли монотонной последовательность с одинаковыми членами?

 

 

 

 

2. Будут ли числа 0 и 1 пределами последовательности {0, 1, 0, 1, …}?

 

 

 

 

3. Можно ли из ограниченной последовательности {1/n} извлечь (выделить) бесконечно большую последовательность?

 

 

 

 

4. Пусть число 5 является пределом последовательности. Будет ли конечным число членов этой последовательности, содержащихся в интервале (3,5; 4,5)?

 

 

 

 








Дата добавления: 2016-04-11; просмотров: 1319;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.