Закон распределения вероятностей дискретной случайной величины
На первый взгляд может показаться, что для задания дискретной случайной величины достаточно перечислить все ее возможные значения. В действительности это не так: случайные величины могут иметь одинаковые перечни возможных значений, а вероятности их – различные. Поэтому для задания дискретной случайной величины недостаточно перечислить все возможные ее значения, нужно еще указать их вероятности.
Законом распределения дискретной случайной величины называют соответствие между возможными значениями и их вероятностями; его можно задать таблично, аналитически (в виде формулы) и графически.
При табличном задании закона распределения дискретной случайной величины первая строка таблицы содержит возможные значения, а вторая — их вероятности:
Приняв во внимание, что в одном испытании случайная величина принимает одно и только одно возможное значение, заключаем, что события X=x1, X=x2,…, X=xn образуют полную группу; следовательно, сумма вероятностей этих событий, т. е. сумма вероятностей второй строки таблицы, равна единице:
.
Если множество возможных значений X бесконечно (счетно), то ряд сходится и его сумма равна единице.
Пример. В денежной лотерее выпущено 100 билетов. Разыгрывается один выигрыш в 50 руб. и десять выигрышей по 1 руб. Найти закон распределения случайной величины X – стоимости возможного выигрыша для владельца одного лотерейного билета.
Решение. Напишем возможные значения X: х1 = 50, х2 = 1, х3 = 0. Вероятности этих возможных значений таковы: р1=0,01, р2=0.01, р3=1-(р1+ р2)=0,89.
Напишем искомый закон распределения:
Контроль: 0,01+0,1+0,89=1.
Для наглядности закон распределения дискретной случайной величины можно изобразить и графически, для чего в прямоугольной системе координат строят точки (xi, pi), а затем соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения.
Дата добавления: 2016-03-27; просмотров: 1561;