ПРОВЕРКА ГИПОТЕЗЫ О РАВЕНСТВЕ ДВУХ ГЕНЕРАЛЬНЫХ СРЕДНИХ

Рассмотрим две независимые выборки x1, x2, ….. , xn и y1, y2 , … , yn, извлеченные из нормальных генеральных совокупностей с одинаковыми дисперсиями , причем объемы выборок соответственно n и m, а средние μx, μy и дисперсия σ2 неизвестны. Требуется проверить основную гипотезу Н0: μxy при конкурирующей Н1: μx μy.

Как известно, выборочные средние и будут обладать свойствами: ~N(μx, σ2/n), ~N(μy, σ2/m).

Их разность - нормальная величина со средним и дисперсией , так что

~ (23).

Допустим на время, что основная гипотеза Н0 верна: μx–μy=0. Тогда и, деля величину на ее стандартное отклонение, получим стандартную нормальную сл. Величину ~N(0,1).

Раньше отмечалось, что сл. величина распределена по закону с (n-1)-ой степенью свободы, a - по закону с (m-1) степенью свободы. С учетом независимости этих двух сумм, получаем, что их общая сумма распределена по закону с n+m-2 степенями свободы.

Вспоминая п.7, видим, что дробь подчиняется t-распределенню (Стьюдента) с ν=m+n-2 степенями свободы: Z=t. Этот факт имеет место только тогда, когда истинна гипотеза Н0.

Заменяя ξ и Q их выражениями, получим развернутую форнулу для Z:

(24)

Сл.величина Z, называемая статистикой критерия, позволяет принять решение при такой последовательности действий:

1. Устанавливается область D=[-tβ,ν, +tβ,ν], содержащая β=1–α площади под кривой tν–распределения (табл.10).

2. Вычисляется по формуле (24) опытное значение Zon статистики Z, для чего вместо X1 и Y1 подставляются значения x1 и y1 конкретных выборок, а также их выборочные средние и .

3. Если Zon D, то гипотеза Н0 считается не противоречащей опытным данным и принимается.

Если Zon D, то принимается гипотеза Н1.

Если гипотеза Н0 верна, то Z подчиняется известному tν–распределению с нулевым средним и с высокой вероятностью β=1–α попадает в D-область принятия гипотезы Н0. Когда наблюдаемое, опытное значение Zon попадает в D. Мы рассматриваем это как свидетельство в пользу гипотезы Н0.

Когда жe Z0n лежит за пределами D (как говорят, лежит в критической области К), что естественно, если верна гипотеза Н1, но маловероятно, если верна Н0, то нам остается отклонить гипотезу Н0, приняв H1.

Пример 31.

Сравниваются две марки бензина: А и В. На 11 автомашинах одинаковой мощности по кольцевому шассе испытан по разу Бензин марки А и В. Одна машина в пути вышла из строя н для нее данные по бензину В отсутствуют.

Расход бензина в пересчете на 100 км пути

Таблица 12

i  
Xi 10,51 11,86 10,5 9,1 9,21 10,74 10,75 10,3 11,3 11,8 10,9 n=11
Уi 13,22 13,0 11,5 10,4 11,8 11,6 10,64 12,3 11,1 11,6 - m=10

Дисперсия расхода бензина марок А и В неизвестна и предполагается одинаковой. Можно ли при уровне значимости α=0,05 принять гипотезу о том, что истинные средние расходы μА и μВ этих видов бензина одинаковы?

Решение. Проверку гипотезы Н0: μАВ=0 при конкурирующей. Н11 μ2 делаем по пунктам:

1. Находим выборочные средние и сумму квадратов откло­нений Q.

;

;

2. Вычисляем опытное значение статистики Z

3. Находим из таблицы 10 t-распределения предел tβ,ν, для числа степеней свободы ν=m+n–2=19 и β=1–α=0.95. В таблице 10 есть t0.95.20=2,09 и t0.95.15=2,13, но нет t0.95.19. Находим интерполяцией t0.95.19=2,09+ =2,10.

4. Проверяем, в какой из двух областей D или К лежит число Zon. Zon=-2,7 D=[-2,10; -2,10].

Поскольку наблюденное значение Zon лежит в критической области, К=R\D, то отбрасываем. Н0 и приникаем гипотезу Н1. В этом случае про и говорят, что их разность значима. Если бы при всех условиях этого примера изменилось бы лишь Q, скажем, Q вдвое возросло, то изменился бы и наш вывод. Увеличение Q вдвое привело бы к уменьшению в раза величины Zon и тогда число Zon попало бы в допустимую область D, так что гипотеза H0 выдержала бы проверку и была принята. В этом случае расхождение между и объяснялось бы естественным разбросом данных, а не тем, что μА μВ.

Теория проверки гипотез весьма обширна, гипотезы могут быть о виде закона распределения, об однородности выборок, о независимости сл.величины и т.д.

КРИТЕРИЙ c2 (ПИРСОНА)

Самый распространенный на практике критерий проверки простой гипотезы. Применяется, когда закон распределения неизвестен. Рассмотрим случайную величину X, над которой проведено n независимых испытаний. Получена реализация x1, x2,...,xn. Необходимо проверить гипотезу о законе распределения этой случайной величины.

Рассмотрим случай простой гипотезы. Простая гипотеза проверяет согласование выборки с генеральной совокупностью, имеющей нормальное распределение (известное). По выборкам строим вариационный ряд x(1), x(2), ..., x(n). Интервал [x(1), x(n)] разбиваем на подинтервалы. Пусть этих интервалов r. Тогда найдем вероятность попадания X в результате испытания в интервал Di, i=1 ,..., r в случае истинности проверяемой гипотезы.

Критерий проверяет не истинность плотности вероятности, а истинность чисел

pi=P(XÎDi)

С каждым интервалом Di свяжем случайное событие Ai - попадание в этот интервал (попадание в результате испытания над X ее результата реализации в Di). Введем случайные величины. mi - количество испытаний из n проведенных, в которых произошло событие Ai. mi распределены по биномиальному закону и в случае истинности гипотезы

Mmi=npi

Dmi=npi(1-pi)

Критерий c2 имеет вид

p1+p2+...+pr=1

m1+m2+...+mr=n

Если проверяемая гипотеза верна, то mi представляет частоту появления события, имеющего в каждом из n проведенных испытаний вероятность pi, следовательно, мы можем рассматривать mi как случайную величину, подчиняющуюся биномиальному закону с центром в точке npi. Когда n велико, то можно считать, что частота распределена асимптотически нормально с теми же параметрами. При правильности гипотезы следует ожидать, что будут асимптотически нормально распределены

связанные между собой соотношением

В качестве меры расхождения данных выборки m1+m2+...+mr с теоретическими np1+np2+...+npr рассмотрим величину

c2 - сумма квадратов асимптотически нормальных величин, связанных линейной зависимостью. Мы ранее встречались уже с аналогичным случаем и знаем, что наличие линейной связи привело к уменьшению на единицу числа степеней свободы.

Если проверяемая гипотеза верна, то критерий c2 имеет распределение, стремящееся при n®¥ к распределению c2 с r-1 степенями свободы.

Допустим, что гипотеза неверна. Тогда существует тенденция к увеличению слагаемых в сумме, т.е. если гипотеза неверна, то эта сумма будет попадать в некую область больших значений c2. В качестве критической области возьмем область положительных значений критерия

 
 

 


В случае неизвестных параметров распределения каждый параметр уменьшает на единицу количество степеней свободы для критерия Пирсона








Дата добавления: 2016-02-27; просмотров: 1000;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.015 сек.