Теоретическая дисперсия дискретной случайной переменной

Теоретическая дисперсия является мерой разброса для вероятностного распределения. Она определяется как математическое ожидание квадрата разности между величиной и ее средним, т.е. величины , где – математическое ожидание . Дисперсия обычно обозначается как или , и если ясно, о какой переменной идет речь, то нижний индекс может быть опущен:

. (A.8)

Из можно получить среднее квадратическое отклонение – столь же распространенную меру разброса для распределения вероятностей; среднее квадратическое отклонение случайной переменной есть квадратный корень из ее дисперсии.

Мы проиллюстрируем расчет дисперсии на примере с одной игральной костью. Поскольку , то в этом случае равно . Мы рассчитаем математическое ожидание величины , используя схему, представленную в табл. A.5. Дополнительный столбец представляет определенный этап расчета . Суммируя последний столбец в табл. I.5, получим значение дисперсии , равное 2,92. Следовательно, стандартное отклонение ( ) равно , то есть 1,71.

Таблица A.5

1/6 –2,5 6,25 1,042
1/6 –1,5 2,25 0,375
1/6 –0,5 0,25 0,042
1/6 0,5 0,25 0,042
1/6 1,5 2,25 0,375
1/6 2,5 6,25 1,042
Всего 2,92

Одним из важных приложений правил расчета математического ожидания является формула расчета теоретической дисперсии случайной переменной, которая может быть записана как

. (A.9)

Это выражение иногда оказывается более удобным, чем первоначальное определение. Доказательство предоставляется читателю в качестве упражнения.








Дата добавления: 2016-02-20; просмотров: 672;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.