Вероятность попадания случайной величины на заданный участок.

Пусть случайная непрерывная величина X может принять частное значение в интервале , причем известна ее функция распределения F(x). Требуется найти вероятность попадания ее в этот интервал, т.е. .

 

Рисунок 4 Определение значений функции распределения на границах интервала

По определению значение функции распределения F(b) в точке b является вероятностью того, что случайная величина примет значение меньшее b, а значение функции распределения F(a) в точке a - вероятностью того, что случайная величина примет значение меньшее a. Следовательно, вероятность попадания случайной величины в этот интервал будет определяться разностью значений функций распределения в граничных точках, т.е.

. (2.1)

Рисунок 5 Определение по функции распределения

 

Вероятность попадания случайной величины на заданный участок равна приращению функции распределения на этом участке (рис. 5).

Пример 1: Прибор рассчитан на входное напряжение не большее 220 Вольт, а напряжение сети является случайной величиной с функцией распределения

если 210<X<230;

F(x) =0, если X<210;

F(x) =1, если X>230.

Определить вероятность отказа прибора из–за непостоянства напряжения сети.

Решение.

Обозначим через A – событие отказа прибора в работе; V – случайная величина напряжения в сети.

P(A)=P(220<V<230)=F(230)-F(220).

F(230)=(x-210)/20=(230-210)/20=1;

F(220)=(220-210)/20=0,5. Откуда P(A)=1-0,5=0,5.








Дата добавления: 2016-04-19; просмотров: 1196;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.