Множество рациональных чисел
Бесконечное множество Q, равномощное множеству натуральных чисел æ0 и
,
называется множеством рациональных чисел.
Рациональное число вводится как отношение целого к натуральному числу. Рациональное число определено не однозначно, поскольку числитель и знаменатель дроби можно домножить на одно и то же, не равное нулю число r, то есть , , . Если в знаменателе рационального числа стоит 1, то получаем целое число, то есть .
Совокупность рациональных чисел упорядочена в отношении порядка «больше», «меньше» (см. неравенства в Z). Обладает свойством плотности, то есть , между p и q можно расположить бесконечно много рациональных чисел. Это дает возможность не только оценивать предметы количественно, но и проводить измерения с любой точностью, например отрезка прямой. Однако множество Q не обладает полнотой. Множество рациональных чисел, с точки зрения алгебры, есть коммутативное кольцо или поле.
Множество Q есть минимальное поле, в котором выполнимы алгебраические операции: , ,
1) сложение: ;
2) умножение: ;
3) вычитание: ;
4) деление: , .
Введено понятие степени числа и извлечение корня. и
1) ;
2) , ;
3) ;
4) ;
5) , ;
6) , ;
в частности, если
7) ;
8) .
Действие с корнями
1) ; , ;
2) ;
3) ;
4) , ;
5) ;
6) .
Для упрощения вычислений, то есть сведéния умножения и деления к сложению и вычитанию, введено понятие логарифма.
Определение. Логарифмом числа b по основанию a называется показатель степени x, в которую нужно возвести основание, чтобы получить число b.
При , , , где , .
Свойства.
Пусть , ,
1) из определения, ;
2) ;
3) ;
4) , ;
5) , ;
6) , , ;
7) ;
8) .
Во множестве Q впервые введено понятие последовательности и ее предела. Геометрическая интерпретация рационального числа – точка на числовой прямой. Расстояние между двумя числами p и q определяется как .
Несмотря на то, что рациональные числа плотно расположены на числовой прямой, их оказалось недостаточно для изучения непрерывно изменяющихся величин. Решение проблемы заключалось в заполнении пустоты, то есть во введении множества иррациональных чисел, которые добавлены к рациональным до непрерывности.
Дата добавления: 2016-01-26; просмотров: 1812;