Формы записи комплексных чисел
Используя операции сложения и умножения комплексных чисел, запишем комплексное число в виде:
.
Эта форма записи комплексного числа называется алгебраической формой.
Комплексные числа, записанные в алгебраической форме можно складывать и умножать как обычные двучлены, учитывая, что .
Пример. .
Определение.Два комплексных числа и , которые отличаются знаком у мнимой части, называют комплексно сопряженными числами.
Подчеркнем, что .
Операцию деления комплексных чисел, записанных в алгебраической форме, можно определить с помощью операции умножения. А именно, чтобы вычислить значение надо числитель и знаменатель дроби умножить на число, сопряженное знаменателю:
.
Пример. .
Используя понятие модуля и аргумента комплексного числа можно записать:
.
Эту форму записи называют тригонометрической формой записи комплексного числа.
Числа, записанные в тригонометрической форме, удобно умножать и делить, используя свойства модуля и аргумента.
Введем обозначение (позже мы увидим, что введенный здесь формально символ есть не что иное, как ). Тогда получим показательную форму записи комплексного числа:
.
Таким образом, всякое комплексное число можно записать в трех формах:
.
В силу указанных свойств модуля и аргумента, операции умножения и деления комплексных чисел удобнее выполнять, если эти числа записаны в тригонометрической или показательной форме.
Пример. Записать комплексное число в трех формах записи.
Решение. - алгебраическая форма записи. , ,
- тригонометрическая форма записи,
- показательная форма записи.
Пример. Вычислить , если , .
Решение. Запишем данные комплексные числа в показательной форме. , , . , , . Тогда .
Дата добавления: 2016-01-09; просмотров: 598;