Звено первого порядка

Звено первого порядка обладает двумя параметрами: инерционностью T и коэффициентом усиления k = Y(t = ∞)/X.

Чем больше производных учитывается в записи модели, тем со звеном большего порядка мы имеем дело, тем больше коэффициентов при производных следует определить.

Введем понятие передаточной функции как модели динамической системы. По определению передаточная функция — это отношение выхода ко входу:

W = Y/X.

Передаточная функция звена первого порядка имеет вид:

W = k/(Tp + 1),

где «p» — символ дифференцирования, тождественно равный «d/dt». Символ «p» также называется алгебраизованным оператором дифференцирования. Тогда, используя определение передаточной функции, имеем:

Y/X = k/(Tp + 1).

Далее получим:

(Tp + 1) · Y = k · X

или

T · dY/dt + Y = k · X

или

T · ΔY/Δt + Y = k · X.

В разностном виде уравнение можно записать как

Или, выразив настоящее через прошедшее:

Yi + 1 = A · Xi + B · Yi.

Здесь A = k · Δt/T и B = 1 – Δt/T — весовые коэффициенты. A указывает на вес компоненты X, определяющей влияние внешнего мира на систему, B указывает на вес компоненты Y, определяющей память системы, влияние на ее поведение истории.

В частности, если B = 0, то Yi + 1 = А · Xi, и мы имеем дело с безынерционной системой Y = k · X, мгновенно реагирующей на входной сигнал и увеличивающей его в k раз.

Если коэффициент B = 0.5, то есть 1 – Δt/T = 0.5 или Δt/T = 0.5, то получаем, что коэффициент A = k · Δt/T = k · 0.5 и, следовательно, Yi + 1 = 0.5 · k · Xi + 0.5 · Yi. При постоянном (единичном) входном сигнале X будет получен график, как на рис. 7.5.

Рис. 7.5. Реакция звена первого порядка на единичный входной сигнал для дискретного случая

 

 

Экспонента, изображенная на графике, при большом n (в пределе n = ∞) стремится к значению входного (единичного) сигнала X, умноженного на коэффициент усиления k, что подтверждается расчетом:

Yn + 1 = 0.5 · k · Xn + 0.5 · Yn = 0.5 · k · Xn + 0.5 · (0.5 · k · Xn – 1 + 0.5 · Yn – 1) =

= … = (0.51 + 0.52 + … + 0.5n + 1) · k · X0 + 0.5n + 1 · Y0 = 1 · k · X0.

Напомним, что выражение (0.51 + 0.52 + … + 0.5n + 1) является геометрической прогрессией, сумма которой при n = ∞ равна 1. А стоящее при Y0 выражение 0.5n + 1 обращается в 0 при n = ∞.

Если еще усилить влияние прошлого (B = 1), то система начнет интегрировать саму себя (выход подан на вход системы), добавляя все время входной сигнал, что соответствует экспоненциальному неограниченному росту выходного сигнала: Yi + 1 = А · Xi + Yi. По смыслу это соответствует положительной обратной связи. При B = –1 имеем модель: Yi + 1 = А · Xi – Yi, по смыслу соответствующую отрицательной обратной связи. При определении модели требуется найти неизвестные коэффициенты k и T.

Звено второго порядка (колебательное звено)

Такие звенья описываются дифференциальным уравнением вида:

Если на вход звена подать единичную функцию Хэвисайда от времени 1[t], при нулевых начальных условиях системы, то реакция на выходе будет называться переходной функцией (или переходной характеристикой), которую часто обозначают как h(t). Сигнал 1[t] — это, в некотором смысле, эталонный испытательный сигнал. Существуют и другие эталонные испытательные сигналы. Например, бесконечный импульс нулевой длины (дельта-функция Дирака), гармонический сигнал, периодические прямоугольные импульсы.

Преобразуем по Лапласу это уравнение:

a0 · p2 · Y(p) + a1 · p · Y(p) + a2 · Y(p) = b · U(p)

или, иначе:

(a0 · p2 + a1 · p + a2) · Y(p) = b · U(p).

Определим передаточную функцию звена:

 

 

Если записать уравнение без входного воздействия (нулевые входные воздействия U = 0) и сократить Y, то есть: T2p2 + 2ξTp + 1 = 0, то такое уравнение будет называться характеристическим, поскольку характеризует исключительно внутренние свойства звена. Обратите внимание, что в записи звена содержатся три параметра:

 

T — постоянная времени (в секундах);

ξ — коэффициент затухания (безразмерная величина);

k — передаточный коэффициент.

В зависимости от величины ξ звенья второго порядка классифицируются по видам:

ξ = 0 — консервативное звено второго порядка;

0 < ξ < 1 — колебательное звено второго порядка;

ξ ≥ 1 — апериодическое звено второго порядка.

Апериодическое звено 2-го порядка (ξ ≥ 1)

Характеристическое уравнение звена следующее:

T2p2 + 2ξTp + 1 = 0.

И оно имеет действительные отрицательные корни:

Данное звено можно представить в виде последовательно соединенных звеньев с различными постоянными времени:

Tогда при T1 > T2 переходная характеристика звена имеет вид:

То есть, в решении присутствуют затухающие экспоненты. Типичное поведение звена с такими параметрами показано на рис. 7.6.

Рис. 7.6. Реакция апериодического звена на единичный входной сигнал

В частном случае, когда ξ = 1, оба корня будут одинаковыми, отрицательными:

 

Колебательное звено 2-го порядка (0 < ξ < 1)

Характеристическое уравнение звена следующее:

T2p2 + 2ξTp + 1 = 0.

Корни разные, комплексно-сопряженные, с отрицательной вещественной частью:

, где a = –ξ/T, b = sqrt(1 – ξ2)/T.

Так как корни мнимые, то в поведении звена присутствует колебательная составляющая. Именно за эту особенность поведения звено получило название колебательного (см. рис. 7.7 и рис. 7.8).

Рис. 7.7. Реакция колебательного звена на входной единичный сигнал (ξ = 0.5)

 

Рис. 7.8. Реакция колебательного звена на входной единичный сигнал (ξ = 0.2)

Из графиков видно, что с ростом ξ колебательность звена уменьшается, исчезая при ξ ≥ 1

Переходная функция звена имеет вид:

 

 

где

 

При малых ξ значение A приближается к 1, а значение φ — к 90°. По физическому смыслу ω0 представляет собой собственную частоту колебаний.

Консервативное звено 2-го порядка (ξ = 0)

Характеристическое уравнение звена следующее:

T2p2 + 1 = 0.

Корни одинаковые, комплексно-сопряженные, с нулевой вещественной частью:

Так как корни чисто мнимые, то поведением звена являются незатухающие колебания (ξ = 0), см. рис. 7.9.

Рис. 7.9. Реакция колебательного звена на входной единичный сигнал

 

 

Переходная функция звена имеет вид: .

Из графика экспериментальным путем можно определить единственный параметр









Дата добавления: 2015-12-08; просмотров: 2884;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.018 сек.