ОТНОСИТЕЛЬНЫЙ ПОКОЙ ЖИДКОСТИ
Сведения из теории
Под относительным покоем понимается такое состояние, при котором в движущейся жидкости отдельные частицы не смещаются одна относительно другой. При этом жидкость перемещается как твердое тело. Само движение жидкости в этом случае можно назвать переносным движением. Для этого состояния характерно постоянство формы объема жидкости. Очевидно, что рассматриваемая масса жидкости будет неподвижна в координатной системе, связанной с движущимся резервуаром.
На жидкость, находящуюся в относительном покое, действуют массовые силы (силы тяжести и силы инерции переносного движения), а из поверхностных – силы давления.
Рассмотрим два частных случая относительного покоя: покой при переносном прямолинейном движении и покой при переносном вращательном движении вокруг вертикальной оси.
3.1.1. Относительный покой при прямолинейном движении на наклонной плоскости
Рассмотрим движение резервуара с жидкостью с постоянным ускорением a по наклонной плоскости, образующей угол a с горизонтальной плоскостью (рис. 3.1).
Жидкость в движущемся резервуаре находится под действием силы давления, силы тяжести и силы инерции переносного движения. Ускорение силы инерции и направлено в сторону, обратную ускорению резервуара a. Результирующий вектор массивных сил определяется диагональю параллелограмма, построенного на ускорениях сил тяжести g и инерции j.
Элемент поверхности равного давления перпендикулярен к диагонали параллелограмма и образует с горизонтом угол b , тангенс, которого равен
(3.1)
Таким образом, поверхности равного давления, образуют семейство параллельных плоскостей с углом наклона к горизонту b .
Необходимо учесть, что если резервуар движется равномерно , то и следовательно и . В этом случае поверхности равного давления представляют семейство горизонтальных плоскостей.
Если резервуар перемещается под действием силы тяжести (сила трения резервуара о плоскость равна 0), то , , , а поверхности равного давления образуют семейство плоскостей, параллельных плоскости скатывания.
Если резервуар перемещается с ускорением, но вертикально ( ), то , а поверхности равного давления образуют семейство горизонтальных плоскостей.
Найдем закон распределения давления в вертикальной плоскости . Учитывая, что система координат перемещается вместе с резервуаром, , а для выбранной плоскости и , уравнение (2.6) примет вид:
. (3.2)
В этом случае .
Тогда
(3.3)
После интегрирования имеем:
(3.4)
Для двух точек 0 и 1 с координатами и имеем:
(3.5)
или
. (3.6)
По аналогии получаем распределение давления в горизонтальной плоскости:
, (3.7)
если , то имеем
, (3.8)
а свободная поверхность имеет угол наклона к горизонту (3.1)
. (3.9)
При свободном падении резервуара и , то есть во всем объеме давление одинаково.
Дата добавления: 2015-12-08; просмотров: 6837;