Матрицы. Терминология
Алгебра матриц
В этой главе, прежде всего, строится матричное исчисление. На множестве матриц, определяемых как таблицы вещественных чисел, вводятся операции (сложения, умножения, умножения на число, транспонирования и обращения) и изучаются свойства этих операций. Выясняется, что наряду со свойствами операций, наследуемыми матрицами у вещественных чисел, у них появляются и новые свойства, которыми вещественные числа не обладают. Например, умножение матриц оказывается некоммутативным.
После этого обсуждается проблема разложения матрицы на простейшие. Оказывается, что любую матрицу единственным образом можно представить в виде суммы матриц, каждая из которых обладает только одним ненулевым элементом. Представление матрицы в виде произведения простейших является более сложным и нуждается в построении специального аппарата элементарных матриц, оправдывающего себя в последующих разделах курса.
В последней части первой главы изучаются простейшие матричные уравнения.
Матрицы. Терминология
Прямоугольная таблица действительных чисел
(1.1)
называется действительной матрицей. Числа , образующие матрицу, называются её элементами. Здесь . Для обозначения матриц будем применять заглавные буквы латинского алфавита A, B, C, ..., X, Y, Z, а для обозначения их элементов – греческие буквы и т.д. с индексами и . При этом первый слева индекс (индекс ) указывает номер строки, а второй индекс (индекс ) – на номер столбца матрицы, на пересечении которых расположен элемент . Наряду с обозначением (1.1) в литературе часто встречаются сокращенные обозначения
или просто . Эти обозначения мы также будем использовать в дальнейшем.
Введем специальные обозначения для строк и столбцов матрицы :
а множество всех действительных матриц с строками и столбцами будем обозначать через . Если , матрица называется прямоугольной матрицей порядка , а если - квадратной матрицей порядка . Множество всех действительных квадратных матриц порядка обозначается . Матрица , имеющая только одну строку,
,
называется матрицей-строкой порядка .
Матрица , имеющая только один столбец,
,
называется матрицей-столбцом порядка . Матрицы-строки и матрицы-столбцы называются также арифметическими векторами. Множество всех арифметических векторов (матриц-столбцов) порядка в дальнейшем будем обозначать через .
Элементы матрицы образуют её главную диагональ. Если все элементы матрицы , не стоящие на её главной диагонали, равны нулю,
,
матрица называется диагональной. Квадратная матрица , у которой все элементы, стоящие выше (ниже) главной диагонали, равны нулю,
называется нижне-треугольной (верхне-треугольной) матрицей.
Понятие матрицы является одним из основных понятий курса алгебры. Элементами числовых матриц (целочисленных, рациональных, действительных, комплексных, булевых) являются числа (целые, рациональные, действительные, комплексные, булевы числа 0 и 1). В этом курсе мы будем иметь дело прежде всего с действительными матрицами. Тем не менее, обозначения и т.д. имеют очевидный смысл. Наряду с числовыми матрицами в этом и других математических курсах встречаются более сложные типы матриц: полиномиальные, функциональные, блочные и т.д., то есть матрицы, элементами которых являются соответственно полиномы (многочлены), функции, блоки (матрицы одинакового порядка) и т.д. В связи с этим отметим, что все положения и свойства матриц, рассматриваемые в данном разделе, с надлежащими уточнениями справедливы и для других указанных выше типов матриц, характер же этих уточнений мы будем обсуждать всякий раз в соответствующем месте.
Принцип равенства
Две действительные матрицы и называются равными (записывается ), если они имеют одинаковые размеры, т.е. числа строк и столбцов у этих матриц совпадают, и на одинаковых местах в этих матрицах стоят одинаковые элементы.
Формализуем это определение: пусть
.
Тогда
,
где и некоторые натуральные числа.
Пример 1. Выяснить, какие из следующих матриц равны
◄ Прежде всего заметим, что все шесть матриц порождены одними и теми же числами: 0, ±1, 2. Далее, сравнивать между собой можно только матрицы и , являющиеся квадратными матрицами порядка 2, так как матрицы и имеют соответственно размеры и и, следовательно, не могут совпадать ни друг с другом, ни с остальными рассматриваемыми здесь матрицами. Матрица не совпадает ни с одной из матриц , так как в отличие от этих трёх матриц у вторая строка целиком состоит из нулей. Далее , так как на пересечении первой строки и первого столбца в этих матрицах стоят разные элементы: в , а в . Наконец, равенства показывают, что . ►
Дата добавления: 2015-11-06; просмотров: 1014;