Итерационно-интерполяционный метод Эйткина
В тех случаях, когда нет необходимости в получении приближенного аналитического выражения функции f(x), заданное таблично, а требуется лишь определить значение этой функции в некоторой точке
, отличной от узлов интерполяции, целесообразно использовать итерационно-интерполяционный метод Эйткина. По существу, этот метод заключается в последовательной линейной интерполяции. Процесс вычисления
состоит в следующем. Пронумеруем узлы интерполяции, например, в порядке удаления их от
и составим матрицу:

Здесь
;
-
интерполяционный многочлен первой степени, построенный по узлам
;
-
интерполяционный многочлен второй степени, построенный по узлам
;
. Продолжая этот процесс, построим многочлен
. (4.43)
Покажем, что если
и
- интерполяционные многочлены, построенные соответственно по узлам
и
, то
- интерполяционный многочлен, построенный соответственно по узлам
.
Действительно, во-первых,
- многочлен степени не выше n, что очевидно из построения формулы (4.43). Во-вторых, во всех узлах
многочлен
принимает соответствующие значения:
(
;
(
;

Вычисляя последовательно по формуле (4.43) значения…
, принимают их за последовательные приближения
. Процесс вычисления практически заканчивают, когда абсолютная величина разности двух последовательных приближений становится достаточно малой.
Дата добавления: 2015-11-06; просмотров: 913;
