Распределение Пуассона
Пусть производится n независимых испытаний, в каждом из которых вероятность появления события А равна р. Для определения вероятности k появлений события А в этих испытаниях используется формула Бернулли. Если же n велико, то пользуются асимптотической формулой Муавра-Лапласа. Однако, эта формула непригодна, если вероятность события мала (р≤0,1). В этих случаях (n велико, р мало, а их произведение np<10) прибегают к асимптотической формуле Пуассона.
Сделаем допущение: произведение np сохраняет постоянное значение, то есть np=λ=сonst. Это означает, среднее число появлений события А в различных сериях испытаний, т.е. при различных значениях n, остается неизменным.
По формуле Бернулли интересующая нас вероятность равна
Так как np=λ, то p= λ/n. Следовательно,
Так как n имеет очень большое значение, вместо Рn(k) найдем . При этом будет найдено лишь приближенное значение отыскиваемой вероятности: хотя n и велико, но конечно при отыскании предела мы устремим n к бесконечности. Поскольку произведение np сохраняет свое постоянное значение, то при n→ ∞ вероятность р→0.
Итак,
Таким образом, (1.41)
Эта формула выражает закон распределения Пуассона вероятностей массовых (n велико) и редких (p мало) событий. Имеются специальные таблицы, пользуясь которыми можно найти Pn(k), зная k и λ.
Пример 1.69. Завод отправил на базу 5000 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равно 0,0002. Найти вероятность того, что на базу прибудут 3 негодных изделия.
Решение. По условию, n=5000, p=0,0002, k=3.
Найдем λ = np=5000·0,0002 = 1.
По формуле Пуассона искомая вероятность приближенно равна
Р5000(3)=λke-λ/k! = e-1/3! = 1/(6·e) ≈ 0,06.
Домашнее задание: ДР-1.16( №1.32,Письменный, стр. 53)
*********************
Дата добавления: 2015-10-30; просмотров: 930;