Производная функций комплексного переменного

Определение. Производной от однозначной функции w = f(z) в точке z называется предел:

Определение. Функция f(z), имеющая непрерывную производную в любой точке области D называется аналитической функцией на этой области.

Правила дифференцирования функций комплексного аргумента не отличаются от правил дифференцирования функций действительной переменной.

Аналогично определяются производные основных функций таких как синус, косинус, тангенс и котангенс, степенная функция и т.д.

Производные гиперболических функций определяются по формулам:

Вывод правил интегрирования, значений производных основных функций ничем не отличается от аналогичных операций с функциями действительного аргумента, поэтому подробно рассматривать их не будем.








Дата добавления: 2015-10-13; просмотров: 633;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.