Аргумент комплексного числа

Нехай вектор зображає к.ч. , рис.1.5. Аргументом числа називається будь-яке із значень кута нахилу вектора до осі :

, де .

Таким чином, аргумент к.ч. набуває нескінченну множину значень. Аргумент числа не визначається.

Рис. 1.5

Найменше за абсолютною величиною значення ( тобто значення з інтервалу ) називається головним значенням аргументу к.ч. і позначається , тому , .

Приклади.

1) Використовуючи рис. 1.6, легко переконатись, що

 

Рис. 1.6

2) Для довільного маємо . Пропонуємо довести цю тотожність самостійно.

 








Дата добавления: 2015-09-18; просмотров: 991;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.005 сек.