Построение сечений тора
Рис. 12
В примере на рис. 12 показано применение вспомогательных плоскостей γ1(γ1") и γ2(γ2") , перпендикулярных оси тора, для построения линии пересечения и натурального вида фигуры сечения поверхности тора плоскостью α (α'"). Тор на рис.12 имеет два изображения - фронтальную проекцию и половину профильной проекции.
Полуокружность радиуса R2 (профильная проекция линии пересечения тора вспомогательной
плоскостью γ2) касается проекции плоскости α(следа α'"). Тем самым определяются профильная проекция 3'" и по ней фронтальная проекция 3'" одной из точек проекции искомой линии пересечения. Полуокружность радиуса R1 - профильная проекция линии пересечения тора вспомогательной плоскостью γ1 . Она пересекает профильную проекцию плоскости α (след α'") в двух точках 5'" и 7'" - профильных проекциях точек линии пересечения. Проводя аналогичные построения, можно получить необходимое количество проекций точек для искомой линии пересечения. Используем найденные точки для построения натурального вида фигуры сечения. Фигура сечения тора плоскостью, параллельной его оси, имеет оси и центр симметрии. При ее построении использованы расстояния l1 и l2 на фронтальной проекции для нанесения точек 50, 70 и 30.
Точки 60 , 80 и 40 построены как симметричные. Построенная кривая пересечения поверхности тора плоскостью выражается алгебраическим уравнением 4-го порядка.
Кривые пересечения тора с плоскостью, параллельной оси, приведены на рис.12 внизу. Они имеют общее название - кривые Персея (Персей — геометр Древней Греции). Это кривые четвертого порядка. Вид кривых зависит от величины расстояния от секущей плоскости до оси тора.
Дата добавления: 2015-09-07; просмотров: 3424;