Лемма. Если какой-нибудь угловой минор матрицы равен нулю, то найдется такой ненулевой вектор , что .

Теорема (Критерий Сильвестра). Справедливы следующие утверждения:

Квадратичная форма положительно определена тогда и только тогда, когда главные миноры матрицы положительны.

Квадратичная форма отрицательно определена тогда и только тогда, когда главные миноры матрицы четного порядка положительны, а главные миноры матрицы нечетного порядка отрицательны.

Доказательство: Докажем первое утверждение.

Необходимость. Дано, что положительно определена. Покажем, что все угловые миноры матрицы отличны от нуля. Допустим обратное, и пусть . Тогда согласно Лемме найдется такой ненулевой вектор , что . Однако это противоречит положительной определенности квадратичной формы.

Итак, матрица удовлетворяет условию Якоби, поэтому можно построить систему векторов Якоби , которая является каноническим базисом , причем выражение ее канонический вид в базисе . Теперь из положительной определенности квадратичной формы и первого утверждения доказанной ранее теоремы следует, что , и значит, что .

Достаточность. Если , то угловые миноры матрицы отличны от нуля, и можно построить канонический базис квадратичной формы , в котором канонический вид квадратичной формы . Поскольку , то положительно определена.

Аналогично доказывается второе утверждение теоремы.








Дата добавления: 2015-10-09; просмотров: 1253;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2025 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.009 сек.