Квадратичная форма отрицательно определена тогда и только тогда, когда все собственные значения матрицы отрицательны.

Доказательство:

Докажем первое утверждение. Рассмотрим ортонормированный базис пространства , состоящий из собственных векторов симметрической матрицы , и пусть , . Тогда – канонический базис квадратичной формы , а выражение – ее канонический вид в базисе . Теперь первое утверждение этой теоремы вытекает из первого предложения предыдущей теоремы.

Второе предложение доказывается аналогично.








Дата добавления: 2015-10-09; просмотров: 683;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.