Метод Зейделя
Метод Зейделя является модификацией метода итерации. Он заключается в том, что при вычислении (k+1)-го приближения неизвестного при i>1 используют уже вычисленные ранее (k+1)-е приближения неизвестных
Пусть дана приведенная линейная система
Выберем произвольно начальные приближения корней ,
Далее, предполагая, что k-е приближения корней известны, согласно Зейделю будем строить (k+1)-е приближения корней по следующим формулам:
Процесс повторяется до тех пор, пока разница между двумя соседними приближениями не будет меньше необходимой точности.
Условия сходимости те же, что и для метода итераций.
Пример 3.2. Пусть дана линейная система и приближенные корни системы:
и .
Приведем систему к виду, удобному для итераций
поэтому метод сходится
Взяв в качестве начальных приближений: , получим:
при k=1
при k = 2
Найдем разность по модулю между соседними приближениями:
| - | = 0,00048
| - | = 0,00047
| - | = 0,00016
Так как для приведенной системы выполняется условие сходимости при ,то полученное приближение имеет погрешность, не превышающую 0,0005.
Таким образом, в качестве решения можем принять .
Дата добавления: 2015-10-09; просмотров: 513;