Дифференциал функции многих переменных

Дифференциалом функции называют сумму произведений частных производных этой функции на приращения соответствующих независимых переменных, т.е. (n – число аргументов).

Для функции двух переменных z = f(x,y) дифференциал можно записать .

По-другому дифференциал записывается как (для двух переменных ).

 

Функция нескольких переменных z = f(х1, х2, …хn) = f (X) называется дифференцируемой в точке X, если ее полное приращение может быть представлено в виде , где dz - дифференциал функции, - бесконечно малые величины при Δхj ® 0.

 

Таким образом, дифференциал функции нескольких переменных, как и в случае одной переменной, представляет собой главную, линейную относительно приращений аргументов, часть полного приращения функции.

Можно доказать, что если частные производные функции существуют в некоторой окрестности точки и непрерывны в самой точке, то функция дифференцируема в этой точке (достаточное условие дифференцируемости функции).

 

Дифференциалом функции многих переменных второго порядка называют сумму произведений частных производных второго порядка этой функции на приращения соответствующих независимых переменных: (n – число аргументов).

Для функции двух переменных z = f(x,y) дифференциал второго порядка можно записать или для непрерывных вторых производных.








Дата добавления: 2015-10-06; просмотров: 737;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.004 сек.