Коэффициенты взаимозависимости для номинального уровня из­мерения. 1 страница

Связь в табл. 2×2. Простейшая задача о взаимозависимости возникает тогда, когда имеются два признака, каждый из которых принимает два значения (табл. 13).

Таблица 13. Распределение отношения к правилам уличного движения в за­висимости от пола

 

Отношение к правилам уличного движения в течение месяца, % Пол Всего
мужской женский
Нарушение Соблюдение
Всего

 

Представим данные о группировке по этим двум признакам так:

 

  В не В Сумма
А Не А a c b d a + b c + d
Сумма a + c b + d n (либо 100%)

 

Для характеристики степени связи двух признаков применяется коэффициент Ф, определяемый формулой

(42)

Коэффициент Ф равен 0, если нет соответствия между двумя дихотомическими переменными, и равен 1 или —1, когда имеется полное соответствие между ними. В силу трудностей с интерпрета­цией знака коэффициента для категоризованных (номинальных) переменных часто используют в анализе лишь абсолютную величи­ну — . Ф легко интерпретируется, поскольку показано, что он представляет собой просто коэффициент корреляции r, если значе­ния каждой дихотомической переменной обозначить 0 и 1.

Как уже отмечалось, Ф вычисляется для категоризованных дан­ных, представляющих естественные дихотомии: пол, раса, и т. п. Приведение количественных переменных к дихотомическому виду связано с выбором граничной точки разделения (например, мужчи­ны до 30 лет и мужчины старше 30 лет). Искусственная дихотомизация, столь часто необходимая в конкретном исследовании при изучении взаимосвязи признаков, может привести к тому, что одна часть дихотомической переменной по своему воздействию будет бо­лее значима для одной связи, другая— для другой, а это даст оши­бочный результат.

Измерение связи в табл., с×k. Рассмотрим теперь более общую ситуацию, когда две переменные классифицированы на две или более категории. Запишем это таким образом:

 

…………… ….
 

 

где частоты; — маргинальные суммы частот по строкам; — маргинальные суммы частот по столбцам. На с. 169 — 172 для выяс­нения отклонения от независимости распределения значений в по­добном случае использовался критерий . Однако сама величина не очень подходит в качестве меры связи, поскольку сильно зависит от числа категорий.

Нормированным коэффициентом корреляции для таблицы с×k является коэффициент сопряженности Пирсона (Р):

(43)

Коэффициент Р = 0 при полной независимости признаков. Недо­статком его является зависимость максимальной величины Р от размера таблицы (максимум Р достигается при, с = k, но сама гра­ница изменяется с изменением числа категорий). В связи с этим возникают трудности сравнения таблиц разного размера.

Чтобы исправить указанный недостаток, Чупров ввел другую величину:

(44)

При с = k Т достигает +1 в случае полной связи, однако не обла­дает этим свойством при .

Коэффициент Крамера (К) может всегда достигать +1 независимо от вида таблицы:

(45)

Для квадратной таблицы коэффициенты Крамера и Чупрова совпа­дают, а в остальных случаях К>Т.

Величина быстро вычисляется с помощью формулы

Вычисление коэффициентов Р, Т и К связано с теми же ограни­чениями на , которые сформулированы на с. 172.

Следующая группа коэффициентов связи для категоризованных данных основана на предположении, что если две переменные свя­заны, то информация об одной переменной может быть использо­вана для предсказания другой. Так, если предположить, что связь между полом индивида и его отношением к правилам уличного движения абсолютно детерминирована, то согласно табл. 13 либо все мужчины были бы нарушителями, а женщины нет, либо наобо­рот. Поскольку это но так, то возникает несоответствие, или, как говорят, ошибка предположения абсолютной связи (обозначим вели­чину этой ошибки ОА).

С другой стороны, можно предположить, что два признака абсолютно не связаны, и нельзя на основе одной переменной предска­зать другую. Поскольку это тоже не так, то возникает ошибка пред­положения об отсутствии связи (О0).

Тогда величина может служить мерой относительного уменьшения ошибки при использовании информации об одной пе­ременной для предсказания другой.

Признак, на основе которого предсказывается другой признак, будем называть независимой переменной, а предсказываемый — за­висимой.

Тогда для случая, когда зависимая переменная расположена по строкам таблицы (т. е. категории расположены по строкам), вычис­ляется коэффициент связи :

(47)

где — наибольшая частота в столбце i; — наибольшая маргинальная частота для строк j.

Пример. Вычислим для данных табл. 13 в предположении, что пол независимая переменная, а отношение к правилам уличного движения — зависимая

Таким образом, использование информации о поле обследован­ных для предсказания отношения к правилам движения не умень­шает относительной ошибки.

Если зависимая переменная — это категории столбцов таблицы, то совершенно аналогично предыдущему вычисляется

(48)

где — наибольшая частота в строке j; — наибольшая маргинальная частота для столбцов i.

Для нашего примера, когда пол зависимая переменная, = 0,4, т. е. получаем 40%-ное уменьшение в ошибке, если используем от­ношение к правилам в качестве предсказывающей пол нарушителя.

Коэффициенты и имеют пределы изменения от 0 до 1. Чем ближе или к 1, тем больше относительное уменьшение в ошиб­ке и большее соответствие (связь) между переменными. Эти коэф­фициенты могут быть использованы для таблиц любого размера.

В ряде случаев удобно использовать симметричную ;

(49)

Разнообразие корреляционных коэффициентов продиктовано стремлением отразить реально существующее разнообразие типов связей в природе и обществе. Поэтому данное обстоятельство сле­дует рассматривать скорее как свидетельство достоинств статисти­ческого аппарата, заключающихся в гибкости и большой приспособ­ленности его к анализу сложнейших взаимосвязей в социальной области. Каждый корреляционный коэффициент приспособлен для измерения вполне определенного вида связи. Техника расчета и конструкция формулы одного и того же коэффициента могут изме­ниться в зависимости от того, какие (например, сгруппированные или несгруппированные) данные приходится анализировать. Срав­ните, например, различные варианты формул для парного коэффи­циента корреляции r. Таким образом, применение того или иного показателя определяется природой данных и формой их представ­ление. Требуемая степень точности также может существенно по­влиять па выбор способа расчета связи в каждом конкретном слу­чае. Обычно оценка пригодности той или иной формулы произво­дится с учетом следующих факторов:

1) природы данных (качественные или количественные признаки);

2) формы и типа зависимости (линейная или нелинейная, поло­жительная или отрицательная связь);

3) требуемой точности расчетов (например, коэффициенты кор­реляции рангов и иногда могут использоваться вместо более точных мер r и );

4) удобства - при вычислении и сравнительной простоты интер­претации; .

5) трудностей технического порядка (имеется ли счетная техни­ка или нужно вести расчеты вручную);

6) распространенности использования того или иного коэффици­ента корреляции;

7) возможности сравнения различных коэффициентов. Обычно предпочитают использовать наиболее распространенные в практике социологических исследований коэффициенты, так как тем- самым достигается возможность сравнения полученных резуль­татов с материалами других исследований.

7. Новые подходы к анализу данных, измеренных по порядковым и номинальным шкалам

В последние годы как у нас в стране, так и за рубежом разработано довольно много математических методов, предназначенных для анализа дан­ных, полученных с помощью измерения по номинальным и порядковым шка­лам. Однако многие из них малознакомы широкому кругу социологов. В на­стоящем параграфе представлен краткий обзор таких методов. К сожалению, в силу сложности и большого объема материала нет возможности подробно изложить суть каждого метода и тем более описать конкретную методику его применения. Поэтому все излагаемое ниже можно рассматривать лишь как некоторое указание на то, к какой литературе необходимо обратиться для решения соответствующей задачи и какого рода вопросы необходимо поста­вить в этой связи перед математиком.

Наиболее распространенными задачами, при решении которых исследова­тель прибегает к помощи математических методов, являются задачи изучения связей между признаками, нахождения латентных переменных, классифи­кации объектов.

Рассмотрим задачу изучения связей между признаками. В предыдущем разделе этой главы уже рассматривались меры связи между номинальными признаками, основанные на анализе таблиц сопряженности. Определенного рода обобщением способов измерения таких связей с помощью критерия можно считать метод логлинейного анализа частотных таблиц. В отличие от упомянутых мер связи логлинейный анализ позволяет анализировать таблицы сопряженности любой размерности и проверять гипотезы о наличии сложных структур связи, состоящие из предположений о существовании связей внутри жаждой из нескольких групп признаков одновременно. Принципы логлиней­ного анализа описаны в литературе достаточно подробно[99].

В основе традиционных подходов к измерению связей между номинальны­ми признаками лежит представление о последней как об интегральной, т. е. о связи между рассматриваемыми признаками в целом (при расчете меры связи учитываются одновременно все те значения, которые эти признаки мо­гут принимать). Однако такое понимание связи не является единственно возможным. Она может пониматься и как локальная, т. е. как связь между отдельными значениями (одним или несколькими рассматриваемыми призна­ками). Наличие интегральной связи отнюдь не означает наличия локаль­ной, и наоборот. Так, вывод об отсутствии интегральной связи между полом и курением (например, основанный на малой величине может не под­твердиться на основе локального анализа той же таблицы данных: т. е. можно предположить, что свойство респондента быть мужчиной довольно жестко определяет то, что этот человек курит (свойство быть женщиной в этом смысле может быть не связано с курением).

В настоящее время разработан довольно широкий круг методов анализа описанных локальных связей. В литературе они часто называются метода­ми поиска детерминирующих комбинаций значений переменных (или взаимо­действий последних)[100]. Прежде чем подробнее пояснить суть задачи и подхо­ды к ее решению, введем некоторые обозначения.

Пусть изучается влияние каких-то l признаков (переменных), обозначае­мых ниже на некоторый интересующий исследователя признак у. Признаки будем называть независимыми переменными, а при­знак у — зависимой переменной. Поясним, что имеется в виду под задачей поиска детерминирующих комбинаций значений переменных.

Исследователь полагает, что рассматриваемые независимые признаки в определенной степени обусловливают тип поведения изучаемых объектов, проявляющийся в том, какие значения для того или иного объекта может принимать зависимая переменная. Другими словами, выдвигается гипотеза о соответствующей детерминации (типа поведения сочетаниями значений не зависимых переменных).

Упомянутый тип поведения может пониматься по-разному. Например, его можно определить как указание вероятностей, с которыми объект, обладаю­щий заданным сочетанием значений х, имеет то или иное значение у. В та­ком случае тип поведения фактически отождествляется с распределением зна­чений зависимого признака для объектов, имеющих рассматриваемый набор значений независимых признаков. Например, если при решении упомянутого .выше вопроса о связи пола-респондента с привычкой к курению придем к выводу, что для мужчин вероятность иметь такую привычку равна 0,8, а не иметь ее — 0,2 и что для женщин аналогичные вероятности равны соответ­ственно 0,3 и 0,7, то будем иметь основания говорить о двух типах поведе­ния респондентов, каждый из которых определяется полом последних.

Можно тип поведения отождествить со средним арифметическим множе­ства значений зависимой переменной для рассматриваемой совокупности объ­ектов (в таком случае естественно предполагать, что значения у получены ]по интервальной шкале). Пусть, например, у — это время, затрачиваемое рес­пондентом в течение дня на чтение газет, — под респондента, его обра­зование. Если в процессе исследования мы обнаружим, что мужчины с выс­шим образованием тратят на чтение газет в среднем 1,5 часа в день, а жен­щины с начальным образованием — 0,01 часа, то можно будет говорить о двух типах поведения респондентов, каждый из которых соответствующим образом связан с рассматриваемыми независимыми признаками.

Тип поведения объекта можно отождествить и с тем, что для этого объ­екта у принимает определенное значение. Подчеркнем, что в любом случав упомянутая выше гипотеза о детерминации не может означать предположе­ния о «жестком» определении значения по сочетанию значений х.

В соответствии с выдвинутой гипотезой исследователь ставит перед собой задачу выяснить, какие именно сочетания значений независимых признаков являются в интересующем его смысле детерминирующими (определяющими тип поведения объектов). Иногда к этому добавляется и задача выделения из числа независимых переменных подсовокупности признаков, наиболее инфор­мативных в том смысле, что по сочетанию именно их значений с наибольшей степенью уверенности можно судить о типе поведения объектов. В едином комплексе с этими задачами может решаться и задача выявления самих ти­пов поведения, свойственных объектам изучаемой совокупности. Именно соче­тание названных трех задач (может быть, без второй или третьей) и называ­ется задачей поиска детерминирующих комбинаций значений переменных.

В соответствии с тем, как понимается тип поведения объектов, должен формироваться критерий, является ли тот или иной набор сочетаний значений х детерминирующим это поведение. Многообразие методов поиска детермини­рующих характеристик и объясняется в основном различием таких критериев.

Например, первому описанному выше пониманию типа поведения отвечает поиск такого разбиения исходной совокупности объектов (соответствующего определенному набору сочетаний значений х), что каждой выделенной подсо­вокупности будет соответствовать свое распределение значении у (степень различия распределений определяется в соответствии с известными статисти­ческими критериями). Искомые детерминирующие комбинации — это те на­боры сочетаний значений с, которые соответствуют выделенным подсовокуп­ностям[101].

Второму пониманию типа поведения отвечает поиск такого разбиения исход­ной совокупности объектов, при котором каждая подсовокупность будет иметь свое среднее арифметическое значение у (т. с. разница между соответствующими средними значениями будет статистически значима)[102]. Отметим тесную связь такого подхода с методами дисперсионного анализа. С помощью которого мож­но изучать влияние совокупности качественных признаков па некоторый ко­личественный признак[103]. Однако дисперсионный анализ предназначен для изучения интегральных связей. Он исходит из априори заданных групп объектов — каждая группа соответствует одному возможному сочетанию зна­чений независимых переменных и позволяет проверить гипотезу о совпадении типов поведения этих групп (тип поведения в дисперсионном анализе пони­мается именно рассматриваемым образом). Описываемые же нами методы решают более широкую задачу — они позволяют проанализировать с той же точки зрения все возможные группы объектов, соответствующие тому или иному набору сочетаний значений независимых переменных.

Подчеркнем, что при использовании описанных подходов ищутся не только сочетания значений независимых переменных, определяющих некоторые типы поведений, но и сами эти типы.

Для иллюстрации одного из возможных подходов к поиску детерминирую­щих комбинаций значений переменных при третьем упомянутом выше пони­мании типа поведения дадим некоторые определения, введенные С. В. Чесноковым[104], и приведем пример из его же работы. Привлекательность методики поиска детерминирующих характеристик, предложенной этим автором, в том, что она по существу является формализацией рассуждений, наиболее часто использующихся социологом при практическом решении задач о статистиче­ской зависимости.

Рассмотрим случай, когда данные представлены таблицей 2×2, изучае­мые объект —респонденты, признак х принимает значения а и b, а признак у — значения с и d. Назовем типом поведения респондента соответствующее ему значение у и ниже будем говорить о детерминации значением а типа по­ведения с. Очевидно, считать, что такая детерминация действительно имеет место, можно только в том случае, если достаточно велика степень уверен­ности в реализации поведения с для объекта, со значением а независимой переменной. Уточним смысл такой уверенности.

Назовем интенсивностью детерминации а®с величину I(а®с), равную доле респондентов, для которых у = с в группе респондентов, удовлетво­ряющих условию: х = а. Интенсивность детерминации означает точность вы­сказывания «если а, то с». Назовем емкостью детерминации а®с величину c(а®с), равную доле респондентов, для которых х = а, в группе респондентов, удовлетворяющих условию у = с. Емкость детерминации измеряет долю случаев реализации поведения с, которая объясняется высказыванием из в следует. Емкость c(а®с) отражает, насколько всеобъемлюще объяснение, по­строенное на детерминации (а®с), т. е. полноту этой детерминации.

Для обоснованности выводов о том, что «а влечет с», недостаточно знать I, необходимо оценить и С.

Пример. Пусть х — пол (а — мужчина, b — женщина), а у — величина зарплаты (с—высокая, d — низкая). Предположим, что частотная таблица имеет вид

 

y x
мужчины (a) женщины (b)
Высокая зарплата (c) Низкая зарплата (d)

 

Тогда очевидно, что

На основании того, что 70% мужчин имеют высокую зарплату, мы не можем говорить, что пол детерминирует величину зарплаты. Для этого выво­да необходимо еще оценить, какова доля мужчин среди лиц с высокой зарплатой. Например, если этот процент равен I, то сформулированный вывод вряд ли можно считать справедливым. Полученные же в рассматриваемом примере 40% могут способствовать обоснованию этого вывода; если исследо­ватель сочтёт этот процент достаточно высоким.

Показатели, аналогичные введенным величинам I и С, легко можно оп­ределить и для того случая, когда количество независимых признаков более одного.

Очевидно, в отличие от тех ситуаций, когда тип понимается одним из двух описанных выше способов, в данном случае мы не выявляем типы по­ведения в процессе нахождения детерминирующих сочетаний. Такая задача решается отдельно для каждого значения зависимой переменной: фиксируя это значение (т. е. тип поведения), мы ищем такие сочетания значений не­зависимых переменных, которые определяют его с достаточно высокими зна­чениями I и С (смысл выражения достаточно высокие определяется иссле­дователем).

Наряду с методами поиска детерминирующих комбинаций значений пе­ременных разработаны подходы к выявлению связей между номинальными признаками, аналогичные методам регрессионного анализа. В последнее деся­тилетие был предложен ряд подходов к решению этого вопроса[105]. Опишем один из них.

Прежде всего заметим, что если все рассматриваемые переменные дихотомические, то, применяя к исходным данным технику обычного регрес­сионного анализа, будем получать содержательно интерпретируемые резуль­таты[106]. Это связано с тем, что дихотомическую шкалу можно считать частным случаем интервальной. Приведем пример вычисления регрессионной за­висимости между номинальными переменными, в котором реализуется метод, основанный на сделанном замечании.

Сначала каждая переменная, принимающая I значений, заменяется на I фиктивных дихотомических переменных: каждому исходному значению соот­ветствует своя дихотомическая переменная.

Пусть и — исходные независимые номинальные переменные, при­нимающие каждая три значения — 1, 2, 3. Через , , , , , обозначим вводимые фиктивные переменные ( , , соответствуют переменной , , ). Значения, принимаемые фиктивными переменными, можно понять из следующей таблицы, где приведены значения и для некото­рых трех объектов.

 

№ объекта Значение исходных переменных Значение фиктивных переменных
0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 1 0
       

 

К полученным фиктивным переменным применяется обычная техника регрессионного анализа. Причем, поскольку зависимая переменная также заменена на k фиктивных переменных (если она принимает k значений), вме­сто одного уравнения рассчитывается k уравнений: для каждой упомянутой фиктивной переменной строится свое уравнение регрессии. Для оценивания влияния независимых переменных на зависимую в целом (а не на отдельные соответствующие ей фиктивные переменные) служит комплекс различных коэффициентов.

Аналогичный подход можно использовать и в случае, если зависимая переменная получена по интервальной шкале[107].

Как уже отмечалось, помимо задачи анализа связей между переменными, довольно актуальными для социологии являются также задачи нахождения латентных переменных и классификации объектов. Правда, эти задачи очень часто можно рассматривать как частный случай задачи изучения связей: ла­тентные факторы обычно находятся именно на основе анализа связей между наблюдаемыми признаками, а для осуществления классификации, как пра­вило, анализируются связи между объектами. Но тем не менее названные задачи -имеют и свою специфику, обусловленную их ролью в изучении инте­ресующих социолога вопросов. Это обусловливает и определенную специфику соответствующих математических методов. Поэтому имеет смысл сказать несколько слов о путях решения обеих задач, когда изучаемые объекты характеризуются значениями номинальных или порядковых признаков[108].

Поиск латентных переменных может осуществляться с помощью методов латентно-структурного анализа. Кроме того, возможны различные подходы к использованию традиционных методов факторного анализа для анализа данных, полученных по порядковой и номинальной шкалам[109].

Основная проблема, встающая перед исследователем, желающим приме­нить математические методы классификации к объектам, заданным значения­ми номинальных и порядковых признаков, — это проблема выбора меры бли­зости между этими объектами. Большинство традиционных мер рассчитано на признаки, измеренные по интервальной шкале. Однако известны и такие меры, которые могут быть применены в интересующем нас случае. Выбор подходящей меры близости обеспечивает возможность использования многих методов классификации[110].

Далее рассмотрим несколько разработанных советскими авторами общих подходов к задаче анализа качественных данных.








Дата добавления: 2015-09-29; просмотров: 1343;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.028 сек.