Параметры гиперболы

Точки F1(–c, 0), F2(c, 0), где называются фокусами гиперболы (рис. 9.10), при этом величина 2с (с > a > 0) определяет междуфокусное расстояние. Точки А1(–а, 0), А2(а, 0) называются вершинами гиперболы, при этом отрезок А1А2 = 2а образует действительную ось гиперболы, а отрезок В1В2 = 2bмнимую ось (В1(0, –b), B2(0, b)), точка Оцентр гиперболы.

 


Рис. 9.10

 

Основные параметры гиперболы, характеризующие ее форму:

величина называется эксцентриситетомгиперболы, она характеризует меру «сжатости» гиперболы;

фокальные радиусыгиперболы (точка М принадлежит гиперболе), причем r1 = a + εx, r2 = –a + εx – для точек правой ветви гиперболы, r1 = – (a + εx), r2 = – (–a + εx) – для точек левой ветви;

директрисыгиперболы;

асимптоты гиперболы.

Для гиперболы справедливо: ε > 1, директрисы не пересекают границу и внутреннюю область гиперболы, а также обладают свойством

Говорят, что уравнение

(9.12)

задает уравнение гиперболы, сопряженной данной (рис. 9.11). Его можно записать также в виде

В таком случае отрезок В1В2 образует действительную ось, а А1А2 – мнимую, вершины находятся в точках В1(0; –b) и B2(0; b), фокусы – F1(0; –c) и F2(0; c), эксцентриситет уравнения директрис

 


Рис. 9.11

 

Точки гиперболы обладают важным характеристическим свойством: абсолютное значение разности расстояний от каждой из них до фокусов есть величина постоянная, равная 2a (рис. 9.10) или 2b (рис. 9.11).

Для параметрического задания гиперболы в качестве параметра t может быть взята величина угла между радиус-век­тором точки, лежащей на гиперболе, и положительным направлением оси Ox:

Пример 1. Привести уравнение гиперболы 9x2 – 16y2 = 144 к каноническому виду, найти ее параметры, угол между асимптотами, изобразить гиперболу.

Решение. Разделим левую и правую части заданного уравнения на 144: Из последнего уравнения непосредственно следует: a = 4, b = 3, c = 5, O(0, 0) – центр гиперболы. Фокусы находятся в точках F1(–5, 0) и F2(5, 0), эксцентриситет ε = 5/4, директрисы D1 и D2 описываются уравнениями D1: x = –16/5, D2: x = 16/5, асимптоты l1 и l2 имеют уравнения

Сделаем рисунок: на координатных осях Ox и Oy симметрично относительно точки О(0, 0) отложим отрезки А1А2 = 2а = 8 и В1В2 = 2b = 6 соответственно (рис. 9.12). Через полученные точки А1(–4, 0), А2(4, 0), В1(0, –3), В2(0, 3) проведем прямые, параллельные координатным осям. В результате получим прямоугольник, диагонали которого лежат на асимптотах гиперболы. Строим гиперболу.

 

 


Рис. 9.12

 

Для нахождения угла φ между асимптотами гиперболы воспользуемся формулой

откуда получаем

Пример 2. Определить тип, параметры и расположение на плоскости кривой, уравнение которой

Решение. С помощью метода выделения полных квадратов упростим правую часть данного уравнения:

Получаем уравнение

которое делением на 30 приводится к виду

Это уравнение гиперболы, центр которой лежит в точке действительная полуось мнимая полуось (рис. 9.13).

 


Рис. 9.13

 

Пример 3. Составить уравнение гиперболы, сопряженной относительно гиперболы определить ее параметры и сделать рисунок.

Решение.Уравнение гиперболы, сопряженной данной:

или

Действительная полуось b = 3, мнимая а = 4, половина междуфокусного расстояния Вершинами гиперболы служат точки B1(0, –3) и В2(0, 3); ее фокусы находятся в точках F1(0, –5) и F2(0, 5); эксцентриситет ε = с/b = 5/3; директрисы D1 и D2 задаются уравнениями D1: y = –9/5, D2: y = 9/5; уравнения являются уравнениями асимптот (рис. 9.14).

 


Рис. 9.14

 

Заметим, что для сопряженных гипербол общими элементами являются «вспомогательный прямоугольник» и асимптоты.

 

Пример 4. Написать уравнение гиперболы с полуосями a и b (a > 0, b > 0), если известно, что ее главные оси параллельны координатным осям. Определить основные параметры гиперболы.

Решение. Искомое уравнение можно рассматривать как уравнение гиперболы которое получается в результате параллельного переноса заданной системы координат на вектор где (x0, y0) – центр гиперболы в «старой» системе координат. Тогда, используя соотношения между координатами произвольной точки М плоскости в заданной и преобразованной системах

получим уравнение гиперболы

Определим параметры. Центр гиперболы определяет точка O¢(x0; y0), а значит, действительная ось задается уравнением у = у0,а мнимая – уравнением х = х0. Ее вершинами являются точки а асимптотами являются прямые . Половина междуфокусного расстояния Тогда фокусы гиперболы находятся в точках , эксцентриситет

Директрисы D1 и D2 задаются уравнениями:

или

Пример 5.Написать уравнение гиперболы, имеющей вершины в фокусах эллипса , а фокусы – в вершинах этого эллипса.

Решение.Уравнение означает, что фокусами эллипса являются точки а вершины, лежащие на главной оси, находятся в точках (так как ).

Тогда для искомой гиперболы известно, что ее фокусы:

а вершины –

Значит, основные параметры гиперболы следующие:

.

Используя данную информацию, приходим к уравнению гиперболы:








Дата добавления: 2015-09-29; просмотров: 3846;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.014 сек.