Введение. В данном разделе рассматриваются основные содержательные теории математической логики: классическая логика высказываний и классическая логика предикатов

ЛОГИКА ВЫСКАЗЫВАНИЙ И ПРЕДИКАТОВ

В данном разделе рассматриваются основные содержательные теории математической логики: классическая логика высказываний и классическая логика предикатов, аппарат которых был частично затронут (в большей степени в связи с анализом логических форм и прежде всего — дедуктивных умозаключений) в предыдущих разделах. Подобного рода теории требуют сугубо символического описания, поэтому их изучение необходимо начинать с освоения алфавита и языка, наиболее простой вариант которых представлен в классической логике высказываний. И классическая логика высказываний и классическая логика предикатов, использующие специфические алфавиты и языки, требуют прежде всего выработки умения осуществлять правильные записи высказывательных форм естественного языка (строить формулы высказываний и термы имён). Такие записи позволяют строго логически выявлять смыслы каких угодно высказывательных форм, избегая неточностей при дальнейшем оперировании с ними. Формулы данных логических теорий могут фиксировать как рассуждения с логическим следованием от посылок к заключению, так и нарушения законов логики и логически недетерминированные высказывания. Важнейшей задачей поэтому является освоение процедур выявления логической сути следования от одних суждений в рассуждении к другим. Для определения истинностных значений формул в классической логике высказываний применяется табличный метод, использование которого в дальнейшем будет распространено и на вероятностные рассуждения. Использование метода истинностных таблиц позволяет осуществить формализованное описание истинностной функции пропозициональных связок, а также исчислять значения «истина» и «ложь» любой формулы классической логики высказывний. Данный метод позволяет практически решать задачу определения вида формулы, выделить те из формул, что являются логическими законами, определять логические отношения между формулами. Следует запомнить и применять в аргументировании тождественно-истинные формулы, фиксирующие основные виды дедуктивных рассуждений. Построение формул и термов в классической логике предикатов так же необходимо для выявления законов логики, отношений между формулами, что осуществляется на более глубоком, чем в классической логике высказываний, уровне анализа. Оперирование же логическими формами в чистом виде является задачей, которая решается в ходе исчисления высказываний и предикатов. Умение выполнять такую задачу означает, что обучаемый освоил систему законов классической логики высказываний и предикатов и умеет эвристически использовать некоторые из них в виде специальных правил исчислений, т. е. умеет на уровне оперирования логическими формами строить обоснования и доказательства. Поскольку же процесс исчисления может быть при выработавшихся навыках абстрагирования от содержания обращён к конкретным содержательным рассуждениям, то умение исчислять высказывания и предикаты становится базой для понимания процедур доказательства и опровержения, рассматриваемых в следующем учебном разделе.








Дата добавления: 2015-09-07; просмотров: 486;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.003 сек.