Умножение матриц

 

Число столбцов матрицы A должно быть равно числу строк матрицы B, тогда говорят, что эти две матрицы согласуются по форме, и произведение AB существует. Если матрица A имеет размерность (m×n), а матрица B имеет размерность (n×k), то матрица C, являющаяся результатом произведения AB=C, будет иметь размерность (m×k). Условно это обозначим так:

.

Для матриц A (m×n) и B (n×m) существует как произведение AB, так и произведение BA. Произведение AB имеет размерность (m×m), а произведение BA - размерность (n×n). Естественно, что они в общем случае не равны. Даже в случае m=n, а значит, при одинаковой размерности (m×m) произведений AB и BA, эти произведения не обязательно равны. Если же оказывается, что они равны, т.е. AB=BA, то в этом случае говорят, что матрицы коммутативны.

Пример 3. Вычислить произведения указанных матриц:

;

.

Свойства умножения матриц. Умножение в общем случае не коммутативно, ассоциативно и дистрибутивно.

1. Некоммутативность:

AB≠BA.

2. Ассоциативность:

(AB)C=A(BC).

3. Дистрибутивность:

(A+B)C=AC+BC.

Умножение на скаляр.

При умножении на скалярную величину каждый элемент матрицы умножается на него.

Умножение на диагональную матрицу.

Умножение слева матрицы A на диагональную матрицу D эквивалентно операции эквивалентную операции со строками A. При умножении справа матрицы A на диагональную матрицу D операции производятся со столбцами матрицы A.

Умножение транспонированных матриц(транспонирование произведения матриц):

(A∙B)T = BTAT.

Умножение на единичную матрицу.

Умножение как слева, так и справа на единичную матрицу не изменяет исходную матрицу, т.е.








Дата добавления: 2015-09-18; просмотров: 793;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.