Для определения p, q, r

Найдем по данным наблюдений выборочное уравнение кривой(параболической в нашем случае) линии среднеквадратичной регрессии.

Ограничимся представлением величины Y в виде параболической функции величины X:

где p, q, и r — параметры, подлежащие определению. Это можно сделать с помощью метода наименьших квадратов.

Подберем параметры p, q и r так, чтобы сумма квадратов отклонений была минимальной. Так как каждое отклонение зависит от отыскиваемых параметров, то и сумма квадратов отклонений есть функция F этих параметров:

Для отыскания минимума приравняем к нулю соответствующие частные производные:

Находим p, q и r. Выполнив элементарные преобразования, получим систему трех линейных уравнений относительно p, q и r:

Решая эту систему методом обратной матрицы, получим: ; ; . Следовательно, уравнение параболической регрессии примет вид:

y= – 0,004x2+3,055x +2,99.

Построим график параболической регрессии. Для удобства наблюдения график регрессии будет на фоне диаграммы рассеивания (см. рисунок 13).

 

 

Рис. 13 Параболическая регрессия y=f(x)

Теперь изобразим линии линейной регрессии и параболической регрессии на одной диаграмме, для наглядного сравнения (см. рисунок 14).

 

 

Рис. 14 Параболическая и линейная регрессии

 

Линейная регрессия изображена красным цветом, а параболическая — синим. По диаграмме видно, что отличие в данном случае больше, чем при сравнении двух линий линейных регрессий. Требуется дальнейшее исследование, какая же регрессия лучше выражает зависимость между x и y, т. е. какой тип зависимости между x и y.

 








Дата добавления: 2015-09-11; просмотров: 999;


Поиск по сайту:

При помощи поиска вы сможете найти нужную вам информацию.

Поделитесь с друзьями:

Если вам перенёс пользу информационный материал, или помог в учебе – поделитесь этим сайтом с друзьями и знакомыми.
helpiks.org - Хелпикс.Орг - 2014-2024 год. Материал сайта представляется для ознакомительного и учебного использования. | Поддержка
Генерация страницы за: 0.006 сек.