Введение. В учении о теплообмене рассматриваются процессы распространения теплоты в твердых, жидких и газообразных телах
В учении о теплообмене рассматриваются процессы распространения теплоты в твердых, жидких и газообразных телах. Эти процессы по своей физико-механической природе весьма многообразны, отличаются большой сложностью и обычно развиваются в виде целого комплекса разнородных явлений.
Перенос теплоты может осуществляться тремя способами: теплопроводностью, конвекцией и излучением, или радиацией. Эти формы теплообмена глубоко различны по своей природе и характеризуются различными законами.
Процесс переноса тепла теплопроводностью происходит между непосредственно соприкасающимися телами или частицами тел с различной температурой. Учение о теплопроводности однородных и изотропных тел опирается на весьма прочный теоретический фундамент. Оно основано на простых количественных законах и располагает хорошо разработанным математическим аппаратом.
Теплопроводность, или кондукция, представляет собой, согласно взглядам современной физики, молекулярный процесс передачи теплоты. В металлах при такой передаче теплоты большую роль играют свободные электроны.
Известно, что при нагревании тела кинетическая энергия его молекул возрастает. Частицы более нагретой части тела, сталкиваясь при своем беспорядочном движении с соседними частицами тела, сообщают им часть своей кинетической энергии. Этот процесс постепенно распространяется по всему телу. Например, если нагревать один конец металлического стержня, то через некоторое время температура другого его конца также повысится. Перенос теплоты теплопроводностью зависит от физических свойств тела, от его геометрических размеров, а также от разности температур между различными частями тела. При определении переноса теплоты теплопроводностью в реальных телах встречаются известные трудности, которые на практике до сих пор удовлетворительно не решены. Эти трудности состоят в том, что тепловые процессы развиваются в неоднородной среде, свойства которой зависят от температуры и изменяются по объему; кроме того, трудности возрастают с увеличением сложности конфигурации системы.
Второй вид переноса теплоты называют конвекцией. Конвекция происходит только в газах и жидкостях и осуществляется при перемещении и перемешивании всей массы неравномерно нагретых жидкости или газа. Конвекционный перенос теплоты происходит тем интенсивнее, чем больше скорости движения жидкости или газа, так как в этом случае за единицу времени перемещается большее количество частиц тела. В жидкостях и газах перенос теплоты конвекцией всегда сопровождается теплопроводностью, так как при этом осуществляется и непосредственный контакт частиц с различной температурой.
Одновременный перенос теплоты конвекцией и теплопроводностью называют конвективным теплообменом; он может быть свободным и вынужденным. Если движение рабочего тела вызвано искусственно (вентилятором, компрессором, мешалкой и др.), то такой конвективный теплообмен называют вынужденным. Если же движение рабочего тела возникает под влиянием разности плотностей отдельных частей жидкости от нагревания, то такой теплообмен называют свободным, или естественным, конвективным теплообменом.
Третий вид теплообмена называют излучением, или радиацией. Процесс передачи теплоты излучением между двумя телами, разделенными полностью или частично пропускающей излучение средой, происходит в три стадии: превращение части внутренней энергии одного из тел в энергию электромагнитных волн, распространение электромагнитных волн в пространстве, поглощение энергии излучения другим телом. При сравнительно невысоких температурах перенос энергии осуществляется в основном инфракрасными лучами.
Передача теплоты излучением протекает независимо от процесса теплопроводности и конвекции, однако последние в большинстве случаев сопутствуют радиации. Совокупность всех трех видов переноса теплоты называют сложным теплообменом. Однако изучение закономерностей сложного теплообмена представляет собой довольно трудную задачу. Поэтому изучают порознь каждый из трех видов теплообмена, после чего становится возможным вести расчеты, относящиеся к сложному теплообмену.
Дата добавления: 2015-09-02; просмотров: 1186;